Linear microrheology with optical tweezers of living cells 'is not an option'!

Optical tweezers have been successfully adopted as exceptionally sensitive transducers for microrheology studies of complex fluids. Despite the general trend, in this article I explain why a similar approach should not be adopted for microrheology studies of living cells. This conclusion is acheived on the basis of statistical mechanics principles that indicate the unsuitability of optical tweezers for such purpose.

[1]  J. Ferry Viscoelastic properties of polymers , 1961 .

[2]  M. Reiner,et al.  The Deborah Number , 1964 .

[3]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[4]  Arthur Ashkin,et al.  Optical Levitation by Radiation Pressure , 1971 .

[5]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[6]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[7]  D. Weitz,et al.  Diffusing wave spectroscopy. , 1988, Physical review letters.

[8]  Steven M. Block,et al.  Compliance of bacterial flagella measured with optical tweezers , 1989, Nature.

[9]  Michael P. Sheetz,et al.  A model for kinesin movement from nanometer-level movements of kinesin and cytoplasmic dynein and force measurements , 1991, Journal of Cell Science.

[10]  Hu Gang,et al.  Diffusing-wave spectroscopy: The technique and some applications , 1993 .

[11]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[12]  Christopher W. Macosko,et al.  Rheology: Principles, Measurements, and Applications , 1994 .

[13]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[14]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[15]  H. D. Ou-Yang,et al.  Forces on a colloidal particle in a polymer solution: a study using optical tweezers , 1996 .

[16]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[17]  R. M. Simmons,et al.  Elasticity and unfolding of single molecules of the giant muscle protein titin , 1997, Nature.

[18]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[19]  E. Sackmann,et al.  Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. , 1999, Biophysical journal.

[20]  A. Mehta,et al.  Single-molecule biomechanics with optical methods. , 1999, Science.

[21]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[22]  Miles J. Padgett,et al.  Lights, action: Optical tweezers , 2002 .

[23]  T. McLeish Tube theory of entangled polymer dynamics , 2002 .

[24]  D. Grier A revolution in optical manipulation , 2003, Nature.

[25]  T. Waigh Microrheology of complex fluids , 2005 .

[26]  Jay X. Tang,et al.  Correlated fluctuations of microparticles in viscoelastic solutions: quantitative measurement of material properties by microrheology in the presence of optical traps. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Mario Fischer,et al.  Calibration of trapping force and response function of optical tweezers in viscoelastic media , 2007 .

[28]  F. MacKintosh,et al.  Nonequilibrium Mechanics of Active Cytoskeletal Networks , 2007, Science.

[29]  Pietro Cicuta,et al.  Microrheology: a review of the method and applications. , 2007, Soft matter.

[30]  Carlos E. Castro,et al.  Passive and active microrheology with optical tweezers , 2007 .

[31]  Jurij Kotar,et al.  The nonlinear mechanical response of the red blood cell , 2007, Physical biology.

[32]  M. Tassieri,et al.  Dynamics of semiflexible polymer solutions in the highly entangled regime. , 2007, Physical review letters.

[33]  Nanorheology of Living Cells Investigated by Atomic Force Microscopy , 2008 .

[34]  M. Tassieri,et al.  The self-assembly, elasticity, and dynamics of cardiac thin filaments. , 2008, Biophysical journal.

[35]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[36]  M. Tassieri,et al.  Analysis of the linear viscoelasticity of polyelectrolytes by magnetic microrheometry—Pulsed creep experiments and the one particle response , 2010 .

[37]  Todd M. Squires,et al.  Fluid Mechanics of Microrheology , 2010 .

[38]  Miles J Padgett,et al.  Measuring storage and loss moduli using optical tweezers: broadband microrheology. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Graham M. Gibson,et al.  Optical tweezers: wideband microrheology , 2010, 1005.1401.

[40]  Ben Fabry,et al.  Linear and Nonlinear Rheology of Living Cells , 2011 .

[41]  D B Phillips,et al.  Download details: IP Address: 137.222.59.47 , 2011 .

[42]  Daisuke Mizuno,et al.  Non-Gaussian athermal fluctuations in active gels , 2011 .

[43]  Jonathan M. Cooper,et al.  Microrheology with optical tweezers: data analysis , 2012 .

[44]  Simon Hanna,et al.  Force sensing with a shaped dielectric micro-tool , 2012 .

[45]  J. Cooper,et al.  Using Optical Tweezers for the Characterization of Polyelectrolyte Solutions with Very Low Viscoelasticity , 2013, Langmuir : the ACS journal of surfaces and colloids.

[46]  T. Waigh,et al.  Modes of correlated angular motion in live cells across three distinct time scales , 2013, Physical biology.

[47]  M. Padgett,et al.  Optical trapping and binding , 2013, Reports on progress in physics. Physical Society.

[48]  D. Boulware,et al.  Cryptococcus neoformans Ex Vivo Capsule Size Is Associated With Intracranial Pressure and Host Immune Response in HIV-associated Cryptococcal Meningitis , 2013, The Journal of infectious diseases.

[49]  Clive G. Wilson,et al.  Investigating the micro-rheology of the vitreous humor using an optically trapped local probe , 2013 .

[50]  Pier Luca Maffettone,et al.  Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance' , 2015, Scientific Reports.