Control of a nonlinear continuous bioreactor with bifurcation by a type-2 fuzzy logic controller

The object of this paper is the application of a type-2 fuzzy logic controller to a nonlinear system that presents bifurcations. A bifurcation can cause instability in the system or can create new working conditions which, although stable, are unacceptable. The only practical solution for an efficient control is the use of high performance controllers that take into account the uncertainties of the process. A type-2 fuzzy logic controller is tested by simulation on a nonlinear bioreactor system that is characterized by a transcritical bifurcation. Simulation results show the validity of the proposed controllers in preventing the system from reaching bifurcation and instable or undesirable stable conditions.

[1]  N. N. Karnik,et al.  Introduction to type-2 fuzzy logic systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[2]  George J. Klir,et al.  Uncertainty-Based Information , 1999 .

[3]  Hong Yiguang,et al.  CONTROLLING HOPF BIFURCATIONS: CONTINUOUS-TIME SYSTEMS , 1999 .

[4]  P. C. Tung,et al.  The Dynamics of an Impact Print Hammer , 1988 .

[5]  J. Levine,et al.  Saddle-node bifurcation control with application to thermal runaway of continuous stirred tank reactors , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[6]  Gaetano Continillo,et al.  Nonlinear dynamics and control in process engineering-recent advances , 2002 .

[7]  Hani Hagras,et al.  Embedded Interval Type-2 Neuro-Fuzzy Speed Controller for Marine Diesel Engines , 2006 .

[8]  Jerry M. Mendel,et al.  Operations on type-2 fuzzy sets , 2001, Fuzzy Sets Syst..

[9]  Martin Mönnigmann,et al.  A method for robustness analysis of controlled nonlinear systems , 2004 .

[10]  Robert John,et al.  A comparative study of fuzzy logic controllers for autonomous robots. , 2006 .

[11]  Hiromu Ohno,et al.  Theory and practice of optimal control in continuous fermentation process , 1975 .

[12]  Dongrui Wu,et al.  A type-2 fuzzy logic controller for the liquid-level process , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[13]  J. Mendel Uncertainty, type-2 fuzzy sets, and footprints of uncertainty , 2003 .

[14]  Theory and Practice of Optimal Control in Continuous Fermentation Processes , 1972 .

[15]  Jung-Hsien Chiang,et al.  Support vector learning mechanism for fuzzy rule-based modeling: a new approach , 2004, IEEE Trans. Fuzzy Syst..

[16]  Fernando Verduzco,et al.  Hopf bifurcation control: A new approach , 2006, Syst. Control. Lett..

[17]  D. Mingori,et al.  Control of Pitchfork and Hopf Bifurcations , 1992, 1992 American Control Conference.

[18]  Woei Wan Tan,et al.  Development of a type-2 fuzzy proportional controller , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[19]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[20]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[21]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[22]  William S. Levine,et al.  The Control Handbook , 2005 .

[23]  Gábor Szederkényi,et al.  Nonlinear analysis and control of a continuous fermentation process , 2002 .

[24]  Jerry M. Mendel,et al.  On the importance of interval sets in type-2 fuzzy logic systems , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[25]  O. Castillo,et al.  Evolutionary computing for optimizing type-2 fuzzy systems in intelligent control of non-linear dynamic plants , 2005, NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society.

[26]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[27]  Costin Sorin Bildea,et al.  Design and control of recycle systems by non-linear analysis , 2007, Comput. Chem. Eng..

[28]  Dongrui Wu,et al.  Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers , 2006, Eng. Appl. Artif. Intell..

[29]  C. Montana Lampo,et al.  Adaptive Fuzzy Control of a Process with Bifurcations , 2002 .

[30]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[31]  B. Bequette Process Dynamics: Modeling, Analysis and Simulation , 1998 .

[32]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[33]  Hani Hagras,et al.  A type-2 fuzzy logic controller for autonomous mobile robots , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).