Metric properties of Sierpiski-like graphs

Sierpinski-like graphs constitute an extensively studied family of graphs of fractal nature applicable in topology, mathematics of the Tower of Hanoi, computer science, and elsewhere. In this paper, some indexes related to degree of the Sierpinski-like graphs have been researched. Using special structure and correlation of Sierpinski-like graphs, the radii, Randic index, Zagreb index, sum-connectivity index and metric dimension of some Sierpinski-like graphs are obtained.

[1]  Sylvain Gravier CODES AND $L(2,1)$-LABELINGS IN SIERPI\'NSKI GRAPHS , 2005 .

[2]  Andreas M. Hinz,et al.  The Average Eccentricity of Sierpiński Graphs , 2012, Graphs Comb..

[3]  A. M. Hinz,et al.  Pascal's triangle and the tower of Hanoi , 1992 .

[4]  Yue-Li Wang,et al.  The Hub Number of Sierpiński-Like Graphs , 2011, Theory of Computing Systems.

[5]  Daniele Parisse,et al.  On Some Metric Properties of the Sierpinski Graphs S(n, k) , 2009, Ars Comb..

[6]  Guojun Li,et al.  The hamiltonicity and path t-coloring of Sierpiński-like graphs , 2012, Discret. Appl. Math..

[7]  Dezheng Xie,et al.  Equitable L(2, 1)-labelings of Sierpiński graphs , 2010, Australas. J Comb..

[8]  Guanghui Wang,et al.  The Linear t-Colorings of Sierpiński-Like Graphs , 2014, Graphs Comb..

[9]  Sylvain Gravier,et al.  Covering codes in Sierpinski graphs , 2010, Discret. Math. Theor. Comput. Sci..

[10]  Tomaz Pisanski,et al.  Growth in Repeated Truncations of Maps , 2000 .

[11]  Bo Zhou,et al.  On a novel connectivity index , 2009 .

[12]  Bo Zhou,et al.  On general sum-connectivity index , 2010 .

[13]  Pierre Hansen,et al.  Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system , 1997, Discret. Math..

[14]  Sandi Klavžar,et al.  Edge disjoint cycles through specified vertices , 2005 .

[15]  Sandi Klavÿzar,et al.  On distances in Sierpiński graphs: Almost-extreme vertices and metric dimension , 2013 .

[16]  Marko Jakovac,et al.  A 2-parametric generalization of Sierpinski gasket graphs , 2014, Ars Comb..

[17]  S. Klavžar,et al.  Graphs S(n, k) and a Variant of the Tower of Hanoi Problem , 1997 .

[18]  Odile Favaron,et al.  k-Domination and k-Independence in Graphs: A Survey , 2012, Graphs Comb..

[19]  S. Klavžar,et al.  1-perfect codes in Sierpiński graphs , 2002, Bulletin of the Australian Mathematical Society.

[20]  S. Lipscomb,et al.  Lipscomb’s () space fractalized in Hilbert’s ²() space , 1992 .

[21]  Dan Romik,et al.  Shortest paths in the Tower of Hanoi graph and finite automata , 2003, SIAM J. Discret. Math..

[22]  Sandi Klavzar,et al.  Vertex-, edge-, and total-colorings of Sierpinski-like graphs , 2009, Discret. Math..

[23]  Sandi Klavzar,et al.  Metric properties of the Tower of Hanoi graphs and Stern's diatomic sequence , 2005, Eur. J. Comb..

[24]  Bojan Mohar,et al.  Crossing numbers of Sierpiński‐like graphs , 2005, J. Graph Theory.

[25]  Guojun Li,et al.  Coloring the Square of Sierpiński Graphs , 2015, Graphs Comb..

[26]  Andreas M. Hinz,et al.  Coloring Hanoi and Sierpiński graphs , 2012, Discret. Math..