The Influence of the Solvent Evaporation Rate on the Phase Separation and Electrical Performances of Soluble Acene‐Polymer Blend Semiconductors

The phase‐separation characteristics of spin‐cast difluorinated‐triethylsilylethynyl anthradithiophene (F‐TESADT)/poly(methyl methacrylate) (PMMA) blends are investigated with the aim of fabricating transistors with a high field‐effect mobility and stability. It is found that the presence of PMMA in the F‐TESADT/PMMA blends prevents dewetting of F‐TESADT from the substrate and provides a platform for F‐TESADT molecules to segregate and crystallize at the air–film interface. By controlling the solvent evaporation rate of the spin‐cast blend solution, it is possible to regulate the phase separation of the two components, which in turn determines the structural development of the F‐TESADT crystals on PMMA. At a low solvent evaporation rate, a bilayer structure consisting of highly ordered F‐TESAT crystals on the top and low‐trap PMMA dielectric on the bottom can be fabricated by a one‐step spin‐casting process. The use of F‐TESADT/PMMA blend films in bottom gate transistors produces much higher field‐effect mobilities and greater stability than homo F‐TESADT films because the phase‐separated interface provides an efficient pathway for charge transport.

[1]  D. Bradley,et al.  The Influence of Film Morphology in High‐Mobility Small‐Molecule:Polymer Blend Organic Transistors , 2010 .

[2]  Wi Hyoung Lee,et al.  Semiconductor‐Dielectric Blends: A Facile All Solution Route to Flexible All‐Organic Transistors , 2009 .

[3]  Wi Hyoung Lee,et al.  Control of the Morphology and Structural Development of Solution‐Processed Functionalized Acenes for High‐Performance Organic Transistors , 2009 .

[4]  Gilles Horowitz,et al.  High‐Performance Organic Field‐Effect Transistors , 2009 .

[5]  A. Facchetti,et al.  Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. , 2009, Journal of the American Chemical Society.

[6]  T. Anthopoulos,et al.  High‐Performance Polymer‐Small Molecule Blend Organic Transistors , 2009 .

[7]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[8]  Martin Baumgarten,et al.  Dithieno[2,3‐d;2′,3′‐d′]benzo[1,2‐b;4,5‐b′]dithiophene (DTBDT) as Semiconductor for High‐Performance, Solution‐Processed Organic Field‐Effect Transistors , 2009 .

[9]  John E. Anthony,et al.  High-performance organic integrated circuits based on solution processable polymer-small molecule blends , 2008 .

[10]  Henning Sirringhaus,et al.  Charge Trapping in Intergrain Regions of Pentacene Thin Film Transistors , 2008 .

[11]  Vivek M. Prabhu,et al.  Structure and properties of small molecule-polymer blend semiconductors for organic thin film transistors. , 2008, Journal of the American Chemical Society.

[12]  Jiro Kasahara,et al.  Solution-processed organic thin-film transistors with vertical nanophase separation , 2008 .

[13]  N. Takada,et al.  Influence of fine roughness of insulator surface on threshold voltage stability of organic field-effect transistors , 2008 .

[14]  Kazuhito Tsukagoshi,et al.  Charge trapping induced current instability in pentacene thin film transistors: Trapping barrier and effect of surface treatment , 2008 .

[15]  Paul H. Wöbkenberg,et al.  Low-voltage organic transistors based on solution processed semiconductors and self-assembled monolayer gate dielectrics , 2008 .

[16]  S. Yeates,et al.  Organic field effect transistors from ambient solution processed low molar mass semiconductor–insulator blends , 2008 .

[17]  Iain McCulloch,et al.  Progress and Challenges in Commercialization of Organic Electronics , 2008 .

[18]  Ping Liu,et al.  Thiophene polymer semiconductors for organic thin-film transistors. , 2008, Chemistry.

[19]  Ullrich Scherf,et al.  Organic semiconductors for solution-processable field-effect transistors (OFETs). , 2008, Angewandte Chemie.

[20]  C. Rovira,et al.  Novel small molecules for organic field-effect transistors: towards processability and high performance. , 2008, Chemical Society reviews.

[21]  Wi Hyoung Lee,et al.  Versatile Use of Vertical‐Phase‐Separation‐Induced Bilayer Structures in Organic Thin‐Film Transistors , 2008 .

[22]  John E. Anthony,et al.  Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. , 2008, Nature materials.

[23]  Sankar Subramanian,et al.  Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. , 2008, Journal of the American Chemical Society.

[24]  Rui Zhang,et al.  Novel Thiophene‐Thiazolothiazole Copolymers for Organic Field‐Effect Transistors , 2007 .

[25]  J. Gierschner,et al.  A new functionalization strategy for pentacene. , 2007, Chemical communications.

[26]  Alberto Salleo,et al.  Solution Based Self‐Assembly of an Array of Polymeric Thin‐Film Transistors , 2007 .

[27]  Henrique L. Gomes,et al.  Dynamics of Threshold Voltage Shifts in Organic and Amorphous Silicon Field‐Effect Transistors , 2007 .

[28]  Zhenan Bao,et al.  Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents , 2007 .

[29]  Shizuo Tokito,et al.  Air stable, high performance pentacene thin-film transistor fabricated on SiO2 gate insulator treated with β-phenethyltrichlorosilane , 2007 .

[30]  Wi Hyoung Lee,et al.  Solution-processable pentacene microcrystal arrays for high performance organic field-effect transistors , 2007 .

[31]  D. Kumaki,et al.  High-mobility and air-stable organic thin-film transistors with highly ordered semiconducting polymer films , 2007 .

[32]  Jeong In Han,et al.  High‐Mobility Organic Transistors Based on Single‐Crystalline Microribbons of Triisopropylsilylethynyl Pentacene via Solution‐Phase Self‐Assembly , 2007 .

[33]  Jung Ah Lim,et al.  Interface engineering in organic transistors , 2007 .

[34]  R. J. Kline,et al.  X-ray scattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). , 2007, Journal of the American Chemical Society.

[35]  A. Stassen,et al.  Organic small molecule field-effect transistors with Cytop™ gate dielectric: Eliminating gate bias stress effects , 2007, cond-mat/0702472.

[36]  Do Hwan Kim,et al.  Effect of side chain length on molecular ordering and field-effect mobility in poly(3-alkylthiophene) transistors , 2006 .

[37]  René A. J. Janssen,et al.  Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold , 2006, Nature materials.

[38]  John E Anthony,et al.  Functionalized acenes and heteroacenes for organic electronics. , 2006, Chemical reviews.

[39]  C. Reese,et al.  Hexathiapentacene: structure, molecular packing, and thin-film transistors. , 2006, Journal of the American Chemical Society.

[40]  Zhenan Bao,et al.  High‐Performance Organic Semiconductors Based on Fluorene–Phenylene Oligomers with High Ionization Potentials , 2006 .

[41]  Robert A. Street,et al.  Surface‐Induced Self‐Encapsulation of Polymer Thin‐Film Transistors , 2006 .

[42]  Tse Nga Ng,et al.  Comparing the kinetics of bias stress in organic field-effect transistors with different dielectric interfaces , 2006 .

[43]  John E. Anthony,et al.  Improving Organic Thin‐Film Transistor Performance through Solvent‐Vapor Annealing of Solution‐Processable Triethylsilylethynyl Anthradithiophene , 2006 .

[44]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[45]  Bertram Batlogg,et al.  Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density , 2006 .

[46]  M. Steigerwald,et al.  Organization of acenes with a cruciform assembly motif. , 2006, Journal of the American Chemical Society.

[47]  Gong Gu,et al.  Electron traps and hysteresis in pentacene-based organic thin-film transistors , 2005 .

[48]  Henning Sirringhaus,et al.  Device Physics of Solution‐Processed Organic Field‐Effect Transistors , 2005 .

[49]  Brandon M. Vogel,et al.  Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed , 2005 .

[50]  D. Gundlach,et al.  Evidence of water-related discrete trap state formation in pentacene single-crystal field-effect transistors , 2005, cond-mat/0508607.

[51]  M. Niwano,et al.  Photoinduced doping effect of pentacene field effect transistor in oxygen atmosphere studied by displacement current measurement , 2005 .

[52]  Thomas N Jackson,et al.  Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V x s. , 2005, Journal of the American Chemical Society.

[53]  Zhenan Bao,et al.  Humidity effect on electrical performance of organic thin-film transistors , 2005 .

[54]  H. Katz Recent Advances in Semiconductor Performance and Printing Processes for Organic Transistor-Based Electronics , 2004 .

[55]  H. Sirringhaus,et al.  Observation of Field‐Effect Transistor Behavior at Self‐Organized Interfaces , 2004 .

[56]  Ping Liu,et al.  High-performance semiconducting polythiophenes for organic thin-film transistors. , 2004, Journal of the American Chemical Society.

[57]  Jeong In Han,et al.  Enhancement of Field‐Effect Mobility Due to Surface‐Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors , 2005 .

[58]  R. Street,et al.  Publisher’s Note: “Light-induced bias stress reversal in polyfluorene thin-film transistors” [J. Appl. Phys. 94, 471 (2003)] , 2003 .

[59]  R. Street,et al.  Bipolaron mechanism for bias-stress effects in polymer transistors , 2003 .

[60]  A. Morpurgo,et al.  Mobile ionic impurities in organic semiconductors , 2003 .

[61]  J S Brooks,et al.  Functionalized pentacene: improved electronic properties from control of solid-state order. , 2001, Journal of the American Chemical Society.

[62]  Eugenio Cantatore,et al.  Bias stress in organic thin-film transistors and logic gates , 2001 .

[63]  A. Lita,et al.  Effects of grain growth on dynamic surface scaling during the deposition of Al polycrystalline thin films , 2000 .

[64]  Dago M. de Leeuw,et al.  Bias-stress induced instability of organic thin film transistors , 1999 .

[65]  David A. Hoagland,et al.  The physics of polymers: Concepts for understanding their structures and behavior , 1997 .

[66]  D. M. Leeuw,et al.  Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices , 1997 .

[67]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[68]  Keiji Tanaka,et al.  Film Thickness Dependence of the Surface Structure of Immiscible Polystyrene/Poly(methyl methacrylate) Blends , 1996 .

[69]  H. Sirringhaus,et al.  Erratum: Downscaling of self-aligned, all-printed polymer thin-film transistors , 2008 .

[70]  Robert A. Street,et al.  Technology and Applications of Amorphous Silicon , 2000 .