DNA Binding: a Novel Function of Pseudomonas aeruginosa Type IV Pili

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa produces multifunctional, polar, filamentous appendages termed type IV pili. Type IV pili are involved in colonization during infection, twitching motility, biofilm formation, bacteriophage infection, and natural transformation. Electrostatic surface analysis of modeled pilus fibers generated from P. aeruginosa strain PAK, K122-4, and KB-7 pilin monomers suggested that a solvent-exposed band of positive charge may be a common feature of all type IV pili. Several functions of type IV pili, including natural transformation and biofilm formation, involve DNA. We investigated the ability of P. aeruginosa type IV pili to bind DNA. Purified PAK, K122-4, and KB-7 pili were observed to bind both bacterial plasmid and salmon sperm DNA in a concentration-dependent and saturable manner. PAK pili had the highest affinity for DNA, followed by K122-4 and KB-7 pili. DNA binding involved backbone interactions and preferential binding to pyrimidine residues even though there was no evidence of sequence-specific binding. Pilus-mediated DNA binding was a function of the intact pilus and thus required elements present in the quaternary structure. However, binding also involved the pilus tip as tip-specific, but not base-specific, antibodies inhibited DNA binding. The conservation of a Thr residue in all type IV pilin monomers examined to date, along with the electrostatic data, implies that DNA binding is a conserved function of type IV pili. Pilus-mediated DNA binding could be important for biofilm formation both in vivo during an infection and ex vivo on abiotic surfaces.

[1]  L. Smillie,et al.  Studies on the primary structure and antigenic determinants of pilin isolated from Pseudomonas aeruginosa K. , 1985, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire.

[2]  M. Fussenegger,et al.  Transformation competence and type-4 pilus biogenesis in Neisseria gonorrhoeae--a review. , 1997, Gene.

[3]  F. Heffron,et al.  Shuttle mutagenesis of Neisseria gonorrhoeae: pilin null mutations lower DNA transformation competence , 1990, Journal of bacteriology.

[4]  Janet M Thornton,et al.  Using electrostatic potentials to predict DNA-binding sites on DNA-binding proteins. , 2003, Nucleic acids research.

[5]  H. Seifert,et al.  Low-Level Pilin Expression Allows for Substantial DNA Transformation Competence in Neisseria gonorrhoeae , 2003, Infection and Immunity.

[6]  T. Hartsch,et al.  Molecular Analyses of the Natural Transformation Machinery and Identification of Pilus Structures in the Extremely Thermophilic Bacterium Thermus thermophilus Strain HB27 , 2002, Applied and Environmental Microbiology.

[7]  R. Hancock,et al.  Phosphate transport in Pseudomonas aeruginosa. Involvement of a periplasmic phosphate-binding protein. , 1984, European journal of biochemistry.

[8]  R. Hodges,et al.  Use of synthetic peptides to confirm that the Pseudomonas aeruginosa PAK pilus adhesin and the Candida albicans fimbrial adhesin possess a homologous receptor‐binding domain , 1996, Molecular microbiology.

[9]  M. Levine,et al.  Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli , 1994, Molecular microbiology.

[10]  A. Kornberg,et al.  Inorganic Polyphosphate Is Required for Motility of Bacterial Pathogens , 2000, Journal of bacteriology.

[11]  J. A. Bass,et al.  Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells , 1980, Infection and immunity.

[12]  M. G. Lorenz,et al.  Bacterial gene transfer by natural genetic transformation in the environment. , 1994, Microbiological reviews.

[13]  B. Stone,et al.  Natural Competence for DNA Transformation by Legionella pneumophila and Its Association with Expression of Type IV Pili , 1999, Journal of bacteriology.

[14]  T. Pitt,et al.  Pilus-dependence of four Pseudomonas aeruginosa bacteriophages with non-contractile tails. , 1974, The Journal of general virology.

[15]  G. Armstrong,et al.  Biochemical studies on pili isolated from Pseudomonas aeruginosa strain PAO. , 1979, Canadian journal of microbiology.

[16]  A. Kornberg,et al.  Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Julie Dawn Thompson,et al.  Improved sensitivity of profile searches through the use of sequence weights and gap excision , 1994, Comput. Appl. Biosci..

[18]  R. Manfredi,et al.  Pseudomonas spp. complications in patients with HIV disease: An eight-year clinical and microbiological survey , 2000, European Journal of Epidemiology.

[19]  W. Wackernagel,et al.  Requirement of Novel Competence Genes pilT andpilU of Pseudomonas stutzeri for Natural Transformation and Suppression of pilT Deficiency by a Hexahistidine Tag on the Type IV Pilus Protein PilAI , 2001, Journal of bacteriology.

[20]  R. Hodges,et al.  The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip‐associated event involving the C‐terminal region of the structural pilin subunit , 1994, Molecular microbiology.

[21]  John A. Tainer,et al.  Structure of the fibre-forming protein pilin at 2.6 Å resolution , 1995, Nature.

[22]  L. Liljas,et al.  Investigating the structural basis of purine specificity in the structures of MS2 coat protein RNA translational operator hairpins. , 2002, Nucleic acids research.

[23]  S. Normark,et al.  Evolution and spread of antibiotic resistance , 2002, Journal of internal medicine.

[24]  C. Goodwin,et al.  Burn Wound Infections: Current Status , 1998, World Journal of Surgery.

[25]  L. Liljas,et al.  The refined structure of bacteriophage MS2 at 2.8 A resolution. , 1993, Journal of molecular biology.

[26]  G. Schoolnik,et al.  An inducible bundle-forming pilus of enteropathogenic Escherichia coli. , 1991, Science.

[27]  S. Lory,et al.  The effect of piliation and exoproduct expression on the adherence of Pseudomonas aeruginosa to respiratory epithelial monolayers. , 1990, The Journal of infectious diseases.

[28]  J. Gustafson,et al.  Cystic Fibrosis , 2009, Journal of the Iowa Medical Society.

[29]  H. Schweizer,et al.  Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. , 1991, Gene.

[30]  D. E. Bradley,et al.  The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. , 1974, Virology.

[31]  B. Stone,et al.  Expression of Multiple Pili by Legionella pneumophila: Identification and Characterization of a Type IV Pilin Gene and Its Role in Adherence to Mammalian and Protozoan Cells , 1998, Infection and Immunity.

[32]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[33]  John A. Tainer,et al.  Type IV pilus structure and bacterial pathogenicity , 2004, Nature Reviews Microbiology.

[34]  D. Dubnau,et al.  DNA uptake in bacteria. , 1999, Annual review of microbiology.

[35]  J. Mattick Type IV pili and twitching motility. , 2002, Annual review of microbiology.

[36]  Nicholas M. Luscombe,et al.  Amino acid?base interactions: a three-dimensional analysis of protein?DNA interactions at an atomic level , 2001, Nucleic Acids Res..

[37]  B. Sykes,et al.  Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. , 2001, The Journal of biological chemistry.

[38]  David J. Evans,et al.  The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa , 2002, Clinical & experimental optometry.

[39]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[40]  M. G. Lorenz,et al.  Bacterial gene transfer by natural genetic transformation in the environment , 1994 .

[41]  V. L. Miller,et al.  Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Irvin,et al.  Crystallographic analysis of the Pseudomonas aeruginosa strain K122-4 monomeric pilin reveals a conserved receptor-binding architecture. , 2004, Biochemistry.

[43]  J. J. Scocca,et al.  On the role of pili in transformation of Neisseria gonorrhoeae. , 1984, Journal of general microbiology.

[44]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[45]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[46]  C. Osborne,et al.  Diagnostic and Therapeutic Considerations , 1996 .

[47]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[48]  M. Wolfgang,et al.  Competence for natural transformation in Neisseria gonorrhoeae: components of DNA binding and uptake linked to type IV pilus expression , 2002, Molecular microbiology.

[49]  J. Ingraham,et al.  Pseudomonas stutzeri and related species undergo natural transformation , 1983, Journal of bacteriology.

[50]  G. Maschmeyer,et al.  Review of the Incidence and Prognosis of Pseudomonas aeruginosa Infections in Cancer Patients in the 1990s , 2000, European Journal of Clinical Microbiology and Infectious Diseases.

[51]  R. Read,et al.  Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. , 2000, Journal of molecular biology.

[52]  B. Cunha Nosocomial pneumonia. Diagnostic and therapeutic considerations. , 2001, The Medical clinics of North America.

[53]  D. Dorward,et al.  DNA-binding proteins in cells and membrane blebs of Neisseria gonorrhoeae , 1989, Journal of bacteriology.

[54]  Matthew R. Parsek,et al.  Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms , 2000, Nature.

[55]  R. Irvin,et al.  DNA-Binding Protein Nanotubes: Learning from Nature's Nanotech Examples , 2004 .

[56]  M. G. Lorenz,et al.  Type IV Pilus Genes pilA andpilC of Pseudomonas stutzeri Are Required for Natural Genetic Transformation, and pilA Can Be Replaced by Corresponding Genes from Nontransformable Species , 2000, Journal of bacteriology.

[57]  R. Hodges,et al.  Inhibition of pilus-mediated adhesion of Pseudomonas aeruginosa to human buccal epithelial cells by monoclonal antibodies directed against pili , 1990, Infection and immunity.

[58]  A. Zychlinsky,et al.  Neutrophil Extracellular Traps Kill Bacteria , 2004, Science.

[59]  H. Hahn,et al.  The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa--a review. , 1997, Gene.

[60]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[61]  M. King,et al.  Amiloride inhalation therapy in cystic fibrosis. Influence on ion content, hydration, and rheology of sputum. , 1993, The American review of respiratory disease.

[62]  A. Merz,et al.  Interactions of pathogenic neisseriae with epithelial cell membranes. , 2000, Annual review of cell and developmental biology.