Refinable functions for dilation families

AbstractWe consider a family of d × d matrices We indexed by e ∈ E where (E, μ) is a probability space and some natural conditions for the family (We)e ∈ E are satisfied. The aim of this paper is to develop a theory of continuous, compactly supported functions $\varphi: {{\mathbb R}}^d \to {\mathbb{C}}$ which satisfy a refinement equation of the form $$ \varphi (x) = \int_E \sum\limits_{\alpha \in {{\mathbb Z}}^d} a_e(\alpha)\varphi\left(W_e x - \alpha\right) d\mu(e) $$ for a family of filters $a_e : {{\mathbb Z}}^d \to {\mathbb{C}}$ also indexed by e ∈ E. One of the main results is an explicit construction of such functions for any reasonable family (We)e ∈ E. We apply these facts to construct scaling functions for a number of affine systems with composite dilation, most notably for shearlet systems.

[1]  Philipp Grohs Interpolating Composite Systems , 2012 .

[2]  Wang-Q Lim,et al.  Wavelets with composite dilations and their MRA properties , 2006 .

[3]  H. Helson Harmonic Analysis , 1983 .

[4]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[5]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[6]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[7]  D. Labate,et al.  Resolution of the wavefront set using continuous shearlets , 2006, math/0605375.

[8]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[9]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[10]  Edward Wilson,et al.  Some simple Haar-type wavelets in higher dimensions , 2007 .

[11]  Vladimir I. Clue Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.

[12]  Wang-Q Lim,et al.  Wavelets with composite dilations , 2004 .

[13]  Bin Han,et al.  A Unitary Extension Principle for Shearlet Systems , 2009, 0912.4529.

[14]  E. Candès,et al.  Continuous curvelet transform: II. Discretization and frames , 2005 .

[15]  Gitta Kutyniok,et al.  Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis , 2007, SIAM J. Math. Anal..

[16]  E. Candès,et al.  Continuous curvelet transform , 2003 .

[17]  Charles A. Micchelli,et al.  Interpolatory Subdivision Schemes and Wavelets , 1996 .

[18]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[19]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[20]  B. Han Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix , 2003 .

[21]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[22]  Jeffrey D. Blanchard Minimally Supported Frequency Composite Dilation Parseval Frame Wavelets , 2009 .

[23]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[24]  E. Candès,et al.  Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .

[25]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[26]  Bin Han,et al.  Symmetry property and construction of wavelets with a general dilation matrix , 2002 .