Random generators of Markovian evolution: A quantum-classical transition by superdecoherence.

Continuous-time Markovian evolution appears to be manifestly different in classical and quantum worlds. We consider ensembles of random generators of N-dimensional Markovian evolution, quantum and classical ones, and evaluate their universal spectral properties. We then show how the two types of generators can be related by superdecoherence. In analogy with the mechanism of decoherence, which transforms a quantum state into a classical one, superdecoherence can be used to transform a Lindblad operator (generator of quantum evolution) into a Kolmogorov operator (generator of classical evolution). We inspect spectra of random Lindblad operators undergoing superdecoherence and demonstrate that, in the limit of complete superdecoherence, the resulting operators exhibit spectral density typical to random Kolmogorov operators. By gradually increasing strength of superdecoherence, we observe a sharp quantum-to-classical transition. Furthermore, we define an inverse procedure of supercoherification that is a generalization of the scheme used to construct a quantum state out of a classical one. Finally, we study microscopic correlation between neighboring eigenvalues through the complex spacing ratios and observe the horseshoe distribution, emblematic of the Ginibre universality class, for both types of random generators. Remarkably, it survives both superdecoherence and supercoherification.

[1]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[2]  V. Gritsev,et al.  Random Matrix Ensemble for the Level Statistics of Many-Body Localization. , 2018, Physical review letters.

[3]  E. Veleva,et al.  Some New Properties of Wishart Distribution , 2008 .

[4]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[5]  Correlations of eigenvectors for non-Hermitian random-matrix models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[7]  R. Alicki,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[8]  Maciej A. Nowak,et al.  Non-Hermitian random matrix models: Free random variable approach , 1997 .

[9]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[10]  F. Piazza,et al.  Many-body hierarchy of dissipative timescales in a quantum computer , 2020, 2011.08853.

[11]  Edouard Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[12]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[13]  U. Fano,et al.  Pairs of two-level systems , 1983 .

[14]  B. Collins,et al.  Generating random density matrices , 2010, 1010.3570.

[15]  S. Gopalakrishnan,et al.  Spectral Gaps and Midgap States in Random Quantum Master Equations. , 2019, Physical review letters.

[16]  Wojciech Słomczyński,et al.  Random unistochastic matrices , 2001, Journal of Physics A: Mathematical and General.

[17]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[18]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[19]  Iosif Meyerov,et al.  Transforming Lindblad Equations into Systems of Real-Valued Linear Equations: Performance Optimization and Parallelization of an Algorithm , 2020, Entropy.

[20]  D. Huse,et al.  Many-body localization phase transition , 2010, 1010.1992.

[21]  M. Ivanchenko,et al.  Unfolding a quantum master equation into a system of real-valued equations: Computationally effective expansion over the basis of SU(N) generators. , 2018, Physical review. E.

[22]  A. Chenu,et al.  Extreme Decoherence and Quantum Chaos. , 2018, Physical review letters.

[23]  K. Życzkowski Quartic quantum theory: an extension of the standard quantum mechanics , 2008, 0804.1247.

[24]  N. Rescher The Threefold Way , 1987 .

[25]  Carsten Timm,et al.  Random transition-rate matrices for the master equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Martin Horvat,et al.  The ensemble of random Markov matrices , 2008, 0812.0567.

[27]  A. Zee,et al.  Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .

[28]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[29]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[30]  G. D’Ariano,et al.  Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.

[31]  D. Huse,et al.  Localization of interacting fermions at high temperature , 2006, cond-mat/0610854.

[32]  Konstantin Stefanov,et al.  Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community , 2019, Supercomput. Front. Innov..

[33]  Henning Schomerus,et al.  Random matrix approaches to open quantum systems , 2016, 1610.05816.

[34]  Maciej A. Nowak,et al.  Non-hermitian random matrix models , 1996, cond-mat/9612240.

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Dariusz Chruściński,et al.  Universal Spectra of Random Lindblad Operators. , 2018, Physical review letters.

[37]  Boris A Khoruzhenko LETTER TO THE EDITOR: Large- N eigenvalue distribution of randomly perturbed asymmetric matrices , 1996 .

[38]  B. Mehlig,et al.  EIGENVECTOR STATISTICS IN NON-HERMITIAN RANDOM MATRIX ENSEMBLES , 1998 .

[39]  Karol Życzkowski,et al.  Random quantum operations , 2008, 0804.2361.

[40]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[41]  Dariusz Chruscinski,et al.  A Brief History of the GKLS Equation , 2017, Open Syst. Inf. Dyn..

[42]  M. Nowak,et al.  Spectra of large time-lagged correlation matrices from random matrix theory , 2016, 1612.06552.

[43]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[44]  E. Merzbacher Decoherence and the Quantum-To-Classical Transition , 2008 .

[45]  Shuangshuang Fu,et al.  Channel-state duality , 2013 .

[46]  B. Mehlig,et al.  Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles , 2000 .

[47]  Shelby Kimmel,et al.  Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.

[48]  D. Thouless Introduction to Phase Transitions and Critical Phenomena , 1972 .

[49]  T. Prosen,et al.  Complex Spacing Ratios: A Signature of Dissipative Quantum Chaos , 2019, Physical Review X.

[50]  Maciej A. Nowak,et al.  Random Hermitian versus random non-Hermitian operators—unexpected links , 2006 .

[51]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[52]  G. Parisi,et al.  Planar diagrams , 1978 .

[53]  M. L. Mehta,et al.  STATISTICAL THEORY OF THE ENERGY LEVELS OF COMPLEX SYSTEMS. PART IV , 1963 .

[54]  C. Timm,et al.  Random-matrix theory for the Lindblad master equation. , 2021, Chaos.

[55]  D. Gross,et al.  Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.

[56]  A. Isar,et al.  ABOUT QUANTUM-SYSTEMS , 2004 .

[57]  K. Życzkowski,et al.  Coherifying quantum channels , 2017, 1710.04228.

[58]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[59]  Wojciech T. Bruzda,et al.  Universality of spectra for interacting quantum chaotic systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[61]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[62]  M. Levandowsky,et al.  Distance between Sets , 1971, Nature.

[63]  P. Alam ‘Z’ , 2021, Composites Engineering: An A–Z Guide.

[64]  A. Zee,et al.  Non-hermitian random matrix theory: Method of hermitian reduction , 1997 .

[65]  C. Bordenave,et al.  Spectrum of Markov Generators on Sparse Random Graphs , 2012, 1202.0644.

[66]  Wojciech Tarnowski,et al.  Real spectra of large real asymmetric random matrices. , 2021, Physical review. E.

[68]  Gernot Akemann,et al.  Universal Signature from Integrability to Chaos in Dissipative Open Quantum Systems. , 2019, Physical review letters.

[69]  Piotr Sniady,et al.  Eigenvalues of non-hermitian random matrices and Brown measure of non-normal operators: hermitian reduction and linearization method , 2015, 1506.02017.

[70]  F. Haake Quantum signatures of chaos , 1991 .

[71]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[72]  David J. Luitz,et al.  Hierarchy of Relaxation Timescales in Local Random Liouvillians. , 2020, Physical review letters.

[73]  Sommers,et al.  Spectrum of large random asymmetric matrices. , 1988, Physical review letters.

[74]  E. Bogomolny,et al.  Distribution of the ratio of consecutive level spacings in random matrix ensembles. , 2012, Physical review letters.

[75]  A. Edelman,et al.  How many eigenvalues of a random matrix are real , 1994 .

[76]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[77]  T. Prosen,et al.  Spectral and steady-state properties of random Liouvillians , 2019, Journal of Physics A: Mathematical and Theoretical.

[78]  T. Can Random Lindblad dynamics , 2019, Journal of Physics A: Mathematical and Theoretical.

[79]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.