Random generators of Markovian evolution: A quantum-classical transition by superdecoherence.
暂无分享,去创建一个
W. Tarnowski | S. Denisov | I. Yusipov | T. Laptyeva | D. Chruściński | K. Życzkowski | K. Życzkowski | D. Chru'sci'nski | W. Tarnowski | T. Laptyeva | S. Denisov | I. Yusipov
[1] I. Stamatescu,et al. Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .
[2] V. Gritsev,et al. Random Matrix Ensemble for the Level Statistics of Many-Body Localization. , 2018, Physical review letters.
[3] E. Veleva,et al. Some New Properties of Wishart Distribution , 2008 .
[4] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[5] Correlations of eigenvectors for non-Hermitian random-matrix models. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[6] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[7] R. Alicki,et al. Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .
[8] Maciej A. Nowak,et al. Non-Hermitian random matrix models: Free random variable approach , 1997 .
[9] John Watrous,et al. The Theory of Quantum Information , 2018 .
[10] F. Piazza,et al. Many-body hierarchy of dissipative timescales in a quantum computer , 2020, 2011.08853.
[11] Edouard Brézin,et al. Exactly Solvable Field Theories of Closed Strings , 1990 .
[12] E. Sudarshan,et al. Completely Positive Dynamical Semigroups of N Level Systems , 1976 .
[13] U. Fano,et al. Pairs of two-level systems , 1983 .
[14] B. Collins,et al. Generating random density matrices , 2010, 1010.3570.
[15] S. Gopalakrishnan,et al. Spectral Gaps and Midgap States in Random Quantum Master Equations. , 2019, Physical review letters.
[16] Wojciech Słomczyński,et al. Random unistochastic matrices , 2001, Journal of Physics A: Mathematical and General.
[17] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[18] F. Dyson. A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .
[19] Iosif Meyerov,et al. Transforming Lindblad Equations into Systems of Real-Valued Linear Equations: Performance Optimization and Parallelization of an Algorithm , 2020, Entropy.
[20] D. Huse,et al. Many-body localization phase transition , 2010, 1010.1992.
[21] M. Ivanchenko,et al. Unfolding a quantum master equation into a system of real-valued equations: Computationally effective expansion over the basis of SU(N) generators. , 2018, Physical review. E.
[22] A. Chenu,et al. Extreme Decoherence and Quantum Chaos. , 2018, Physical review letters.
[23] K. Życzkowski. Quartic quantum theory: an extension of the standard quantum mechanics , 2008, 0804.1247.
[24] N. Rescher. The Threefold Way , 1987 .
[25] Carsten Timm,et al. Random transition-rate matrices for the master equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] Martin Horvat,et al. The ensemble of random Markov matrices , 2008, 0812.0567.
[27] A. Zee,et al. Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .
[28] K. Lendi,et al. Quantum Dynamical Semigroups and Applications , 1987 .
[29] Freeman J. Dyson,et al. The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .
[30] G. D’Ariano,et al. Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.
[31] D. Huse,et al. Localization of interacting fermions at high temperature , 2006, cond-mat/0610854.
[32] Konstantin Stefanov,et al. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community , 2019, Supercomput. Front. Innov..
[33] Henning Schomerus,et al. Random matrix approaches to open quantum systems , 2016, 1610.05816.
[34] Maciej A. Nowak,et al. Non-hermitian random matrix models , 1996, cond-mat/9612240.
[35] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[36] Dariusz Chruściński,et al. Universal Spectra of Random Lindblad Operators. , 2018, Physical review letters.
[37] Boris A Khoruzhenko. LETTER TO THE EDITOR: Large- N eigenvalue distribution of randomly perturbed asymmetric matrices , 1996 .
[38] B. Mehlig,et al. EIGENVECTOR STATISTICS IN NON-HERMITIAN RANDOM MATRIX ENSEMBLES , 1998 .
[39] Karol Życzkowski,et al. Random quantum operations , 2008, 0804.2361.
[40] Tsuyoshi Murata,et al. {m , 1934, ACML.
[41] Dariusz Chruscinski,et al. A Brief History of the GKLS Equation , 2017, Open Syst. Inf. Dyn..
[42] M. Nowak,et al. Spectra of large time-lagged correlation matrices from random matrix theory , 2016, 1612.06552.
[43] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .
[44] E. Merzbacher. Decoherence and the Quantum-To-Classical Transition , 2008 .
[45] Shuangshuang Fu,et al. Channel-state duality , 2013 .
[46] B. Mehlig,et al. Statistical properties of eigenvectors in non-Hermitian Gaussian random matrix ensembles , 2000 .
[47] Shelby Kimmel,et al. Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.
[48] D. Thouless. Introduction to Phase Transitions and Critical Phenomena , 1972 .
[49] T. Prosen,et al. Complex Spacing Ratios: A Signature of Dissipative Quantum Chaos , 2019, Physical Review X.
[50] Maciej A. Nowak,et al. Random Hermitian versus random non-Hermitian operators—unexpected links , 2006 .
[51] M. Hastings. Superadditivity of communication capacity using entangled inputs , 2009 .
[52] G. Parisi,et al. Planar diagrams , 1978 .
[53] M. L. Mehta,et al. STATISTICAL THEORY OF THE ENERGY LEVELS OF COMPLEX SYSTEMS. PART IV , 1963 .
[54] C. Timm,et al. Random-matrix theory for the Lindblad master equation. , 2021, Chaos.
[55] D. Gross,et al. Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.
[56] A. Isar,et al. ABOUT QUANTUM-SYSTEMS , 2004 .
[57] K. Życzkowski,et al. Coherifying quantum channels , 2017, 1710.04228.
[58] P. Alam. ‘G’ , 2021, Composites Engineering: An A–Z Guide.
[59] Wojciech T. Bruzda,et al. Universality of spectra for interacting quantum chaotic systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[60] W. Zurek. The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .
[61] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[62] M. Levandowsky,et al. Distance between Sets , 1971, Nature.
[63] P. Alam. ‘Z’ , 2021, Composites Engineering: An A–Z Guide.
[64] A. Zee,et al. Non-hermitian random matrix theory: Method of hermitian reduction , 1997 .
[65] C. Bordenave,et al. Spectrum of Markov Generators on Sparse Random Graphs , 2012, 1202.0644.
[66] Wojciech Tarnowski,et al. Real spectra of large real asymmetric random matrices. , 2021, Physical review. E.
[68] Gernot Akemann,et al. Universal Signature from Integrability to Chaos in Dissipative Open Quantum Systems. , 2019, Physical review letters.
[69] Piotr Sniady,et al. Eigenvalues of non-hermitian random matrices and Brown measure of non-normal operators: hermitian reduction and linearization method , 2015, 1506.02017.
[70] F. Haake. Quantum signatures of chaos , 1991 .
[71] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[72] David J. Luitz,et al. Hierarchy of Relaxation Timescales in Local Random Liouvillians. , 2020, Physical review letters.
[73] Sommers,et al. Spectrum of large random asymmetric matrices. , 1988, Physical review letters.
[74] E. Bogomolny,et al. Distribution of the ratio of consecutive level spacings in random matrix ensembles. , 2012, Physical review letters.
[75] A. Edelman,et al. How many eigenvalues of a random matrix are real , 1994 .
[76] Terence Tao,et al. Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.
[77] T. Prosen,et al. Spectral and steady-state properties of random Liouvillians , 2019, Journal of Physics A: Mathematical and Theoretical.
[78] T. Can. Random Lindblad dynamics , 2019, Journal of Physics A: Mathematical and Theoretical.
[79] M. Plenio,et al. Quantifying coherence. , 2013, Physical review letters.