Delay-independent sliding mode control for a class of quasi-linear parabolic distributed parameter systems with time-varying delay

Abstract The sliding mode control (SMC) problem for a class of quasi-linear parabolic partial differential equation (PDE) systems with time-varying delay is considered. Firstly, the stability problem for the reduced order sliding dynamical equations is investigated and a sufficient condition for the stability of sliding motion is given. Then the SMC law, which forces the system state from any initial state to reach the sliding manifold within finite time, is designed. At last a simulation example is presented to illustrate effectiveness of the proposed method.

[1]  W. Ray,et al.  Identification and control of distributed parameter systems by means of the singular value decomposition , 1995 .

[2]  Wu-Chung Su,et al.  Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties , 2011, Autom..

[3]  Hector Puebla,et al.  Linear boundary control for a class of nonlinear PDE processes , 2001, Syst. Control. Lett..

[4]  P. Daoutidis,et al.  Nonlinear control of diffusion-convection-reaction processes , 1996 .

[5]  Guang-Ren Duan,et al.  Variable structure adaptive fuzzy control for a class of nonlinear time delay systems , 2004, Proceedings of the 2004 American Control Conference.

[6]  M. Krstić,et al.  Backstepping observers for a class of parabolic PDEs , 2005, Syst. Control. Lett..

[7]  Olfa Boubaker,et al.  On SISO and MIMO variable structure control of non linear distributed parameter systems: application to fixed bed reactors , 2003 .

[8]  Hsueh-Chia Chang,et al.  Accelerated disturbance damping of an unknown distributed system by nonlinear feedback , 1992 .

[9]  Alessandro Pisano,et al.  Output-feedback control of an underwater vehicle prototype by higher-order sliding modes , 2004, Autom..

[10]  Jean-Pierre Corriou,et al.  Optimal linear PI fuzzy controller design of a heat exchanger , 2008 .

[11]  Vadim I. Utkin,et al.  Sliding mode control in indefinite-dimensional systems , 1987, Autom..

[12]  Panagiotis D. Christofides,et al.  Robust Control of Parabolic PDE Systems , 1998 .

[13]  A. Palazoglu,et al.  Sliding Mode Control of Nonlinear Distributed Parameter Chemical Processes , 1995 .

[14]  W. E. Schmitendorf,et al.  Optimal control of the end-temperature in a semi-infinite rod , 1977 .

[15]  Miroslav Krstic,et al.  Adaptive boundary control for unstable parabolic PDEs - Part III: Output feedback examples with swapping identifiers , 2007, Autom..

[16]  Oscar Monroy,et al.  Anaerobic treatment of low concentration waste water in an inverse fluidized bed reactor , 2000 .

[17]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[18]  Weibing Gao,et al.  Variable structure control of nonlinear systems: a new approach , 1993, IEEE Trans. Ind. Electron..

[19]  G. Froment,et al.  Chemical Reactor Analysis and Design , 1979 .

[20]  Costas J. Spanos,et al.  Advanced process control , 1989 .

[21]  M. Balas FEEDBACK CONTROL OF LINEAR DIFFUSION PROCESSES , 1979 .

[22]  Miroslav Krstic,et al.  Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations , 2004, IEEE Transactions on Automatic Control.

[23]  V. Utkin Variable structure systems with sliding modes , 1977 .

[24]  G. Tang,et al.  Optimal sliding mode control for nonlinear systems with time-delay , 2008 .

[25]  V. Utkin,et al.  Sliding mode control in dynamic systems , 1992 .

[26]  B. Goodwine,et al.  Controllability of cross-flow heat exchangers , 2004 .