Sampling strategies for the Herman–Kluk propagator of the wavefunction

When the semiclassical Herman–Kluk propagator is used for evaluating quantum-mechanical observables or time-correlation functions, the initial conditions for the guiding trajectories are typically sampled from the Husimi density. Here, we employ this propagator to evolve the wavefunction itself. We investigate two grid-free strategies for the initial sampling of the Herman–Kluk propagator applied to the wavefunction and validate the resulting time-dependent wavefunctions evolved in harmonic and anharmonic potentials. In particular, we consider Monte Carlo quadratures based either on the initial Husimi density or on its square root as possible and most natural sampling densities. We prove analytical convergence error estimates and validate them with numerical experiments on the harmonic oscillator and on a series of Morse potentials with increasing anharmonicity. In all cases, sampling from the square root of Husimi density leads to faster convergence of the wavefunction.

[1]  N. Ananth,et al.  A Semiclassical Framework for Mixed Quantum Classical Dynamics. , 2022, The journal of physical chemistry. A.

[2]  Jian Liu,et al.  Coherent state representation of thermal correlation functions with applications to rate theory. , 2022, The Journal of chemical physics.

[3]  Christian Lubich,et al.  Computing quantum dynamics in the semiclassical regime , 2020, Acta Numerica.

[4]  J. Moser,et al.  Semiclassical Approach to Photophysics Beyond Kasha's Rule and Vibronic Spectroscopy Beyond the Condon Approximation. The Case of Azulene. , 2020, Journal of chemical theory and computation.

[5]  Rick Durrett Probability , 2019 .

[6]  J. Vaníček,et al.  Single-Hessian thawed Gaussian approximation. , 2019, The Journal of chemical physics.

[7]  J. Vaníček,et al.  On-the-fly ab initio semiclassical evaluation of time-resolved electronic spectra. , 2018, The Journal of chemical physics.

[8]  E. Heller The Semiclassical Way to Dynamics and Spectroscopy , 2018 .

[9]  M. Ceotto,et al.  Simplified approach to the mixed time-averaging semiclassical initial value representation for the calculation of dense vibrational spectra. , 2018, The Journal of chemical physics.

[10]  N. Ananth,et al.  Validating and implementing modified Filinov phase filtration in semiclassical dynamics. , 2017, The Journal of chemical physics.

[11]  David Sattlegger,et al.  Discretising the Herman–Kluk propagator , 2016, Numerische Mathematik.

[12]  E. Pollak,et al.  Semiclassical initial value representation for the quantum propagator in the Heisenberg interaction representation. , 2015, The Journal of chemical physics.

[13]  M. Ceotto,et al.  Mixed semiclassical initial value representation time-averaging propagator for spectroscopic calculations. , 2015, The Journal of chemical physics.

[14]  F. Grossmann A semiclassical hybrid approach to linear response functions for infrared spectroscopy , 2015, 1512.00185.

[15]  N. Ananth,et al.  Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach. , 2015, The Journal of chemical physics.

[16]  Gareth W Richings,et al.  Quantum dynamics simulations using Gaussian wavepackets: the vMCG method , 2015 .

[17]  B. Hall Quantum Theory for Mathematicians , 2013 .

[18]  J. Vaníček,et al.  Role of sampling in evaluating classical time autocorrelation functions. , 2012, The Journal of chemical physics.

[19]  J. Vaníček,et al.  Beating the efficiency of both quantum and classical simulations with a semiclassical method. , 2011, Physical review letters.

[20]  Pranab Sarkar,et al.  The Fourier grid Hamiltonian method for calculating vibrational energy levels of triatomic molecules , 2011 .

[21]  J. Vaníček,et al.  Efficient sampling avoids the exponential wall in classical simulations of fidelity. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Didier Robert,et al.  ON THE HERMAN-KLUK SEMICLASSICAL APPROXIMATION , 2009, 0908.0847.

[23]  F. Grossmann,et al.  Decoherence and dissipation in a molecular system coupled to an environment: an application of semiclassical hybrid dynamics. , 2009, The Journal of chemical physics.

[24]  M. Ceotto,et al.  Multiple coherent states for first-principles semiclassical initial value representation molecular dynamics. , 2009, The Journal of chemical physics.

[25]  K. Kay,et al.  Tunneling in two-dimensional systems using a higher-order Herman-Kluk approximation. , 2009, The Journal of chemical physics.

[26]  E. Pollak,et al.  Semiclassical on-the-fly computation of the S(0)-->S(1) absorption spectrum of formaldehyde. , 2009, Journal of Chemical Physics.

[27]  K. Kay,et al.  Tunneling by a semiclassical initial value method with higher order corrections , 2008 .

[28]  Torben Swart,et al.  A Mathematical Justification for the Herman-Kluk Propagator , 2007, 0712.0752.

[29]  Michele Ceotto,et al.  First-principles semiclassical initial value representation molecular dynamics. , 2007, Physical chemistry chemical physics : PCCP.

[30]  D. Tannor,et al.  Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .

[31]  Michael F. Herman,et al.  A justification for a nonadiabatic surface hopping Herman-Kluk semiclassical initial value representation of the time evolution operator. , 2006, The Journal of chemical physics.

[32]  F. Grossmann A semiclassical hybrid approach to many particle quantum dynamics. , 2006, The Journal of chemical physics.

[33]  G. S. Ezra,et al.  On the derivation of the Herman–Kluk propagator , 2006 .

[34]  K. Kay,et al.  The Herman–Kluk approximation: Derivation and semiclassical corrections , 2006 .

[35]  Michael F. Herman,et al.  Nonadiabatic surface hopping Herman-Kluk semiclassical initial value representation method revisited: applications to Tully's three model systems. , 2005, The Journal of chemical physics.

[36]  J. Vaníček Dephasing representation of quantum fidelity for general pure and mixed states. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  M. Spanner,et al.  Is the Filinov integral conditioning technique useful in semiclassical initial value representation methods? , 2005, The Journal of chemical physics.

[38]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[39]  D. Shalashilin,et al.  The phase space CCS approach to quantum and semiclassical molecular dynamics for high-dimensional systems , 2004 .

[40]  Michael Thoss,et al.  Semiclassical description of molecular dynamics based on initial-value representation methods. , 2004, Annual review of physical chemistry.

[41]  E. Hairer,et al.  Geometric numerical integration illustrated by the Störmer–Verlet method , 2003, Acta Numerica.

[42]  W. Miller,et al.  Time averaging the semiclassical initial value representation for the calculation of vibrational energy levels , 2003 .

[43]  Phil Dyke,et al.  An Introduction to Laplace Transforms and Fourier Series , 2002 .

[44]  W. Miller An alternate derivation of the Herman—Kluk (coherent state) semiclassical initial value representation of the time evolution operator , 2002 .

[45]  W. Miller On the Relation between the Semiclassical Initial Value Representation and an Exact Quantum Expansion in Time-Dependent Coherent States † , 2002 .

[46]  André Martinez,et al.  An Introduction to Semiclassical and Microlocal Analysis , 2002 .

[47]  William H. Miller,et al.  The Semiclassical Initial Value Representation: A Potentially Practical Way for Adding Quantum Effects to Classical Molecular Dynamics Simulations , 2001 .

[48]  J. Shao,et al.  Forward–backward semiclassical dynamics in the interaction representation , 2000 .

[49]  K. Kay,et al.  Improving the efficiency of the Herman–Kluk propagator by time integration , 1999 .

[50]  G. Hagedorn Raising and Lowering Operators for Semiclassical Wave Packets , 1998 .

[51]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[52]  William Kahan,et al.  Composition constants for raising the orders of unconventional schemes for ordinary differential equations , 1997, Math. Comput..

[53]  D. Manolopoulos,et al.  Semiclassical dynamics in up to 15 coupled vibrational degrees of freedom , 1997 .

[54]  S. Garashchuk,et al.  Wave packet correlation function approach to H2(ν)+H→H+H2(ν′): semiclassical implementation , 1996 .

[55]  D. Manolopoulos,et al.  A new semiclassical initial value method for Franck-Condon spectra , 1996 .

[56]  K. Kay,et al.  Numerical study of semiclassical initial value methods for dynamics , 1994 .

[57]  K. Kay,et al.  Integral expressions for the semiclassical time‐dependent propagator , 1994 .

[58]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[59]  Martin Karplus,et al.  Multidimensional variational Gaussian wave packet dynamics with application to photodissociation spectroscopy , 1990 .

[60]  W. Miller,et al.  Monte Carlo path integration for the real time propagator , 1988 .

[61]  W. Miller,et al.  Monte carlo integration with oscillatory integrands: implications for feynman path integration in real time , 1987 .

[62]  Michael F. Herman Time reversal and unitarity in the frozen Gaussian approximation for semiclassical scattering , 1986 .

[63]  E. Kluk,et al.  A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .

[64]  Ian Stewart,et al.  Complex Analysis , 1983 .

[65]  E. Heller,et al.  Polyatomic Raman scattering for general harmonic potentials , 1982 .

[66]  E. Heller,et al.  Exact time‐dependent wave packet propagation: Application to the photodissociation of methyl iodide , 1982 .

[67]  Eric J. Heller,et al.  Frozen Gaussians: A very simple semiclassical approximation , 1981 .

[68]  G. Hagedorn Semiclassical quantum mechanics , 1980 .

[69]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[70]  William H. Miller,et al.  Classical S Matrix: Numerical Application to Inelastic Collisions , 1970 .

[71]  E. Hairer,et al.  Structure-Preserving Algorithms for Ordinary Differential Equations , 2006 .

[72]  K. Kay,et al.  Semiclassical initial value treatments of atoms and molecules. , 2005, Annual review of physical chemistry.

[73]  V. Filinov,et al.  Calculation of the feynman integrals by means of the Monte Carlo method , 1986 .

[74]  E. Kluk,et al.  Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator , 1986 .

[75]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method II: Vibrational energy levels of triatomic molecules , 1983 .