CW cavity ring down spectroscopy

Until now, applications of cavity ring down spectroscopy (CRDS) employed pulsed laser sources. Here, we demonstrate that a commercial single-frequency CW laser can also be conveniently employed, allowing to gain in spectral resolution, signal intensity and data acquisition rate. As a demonstration, we measured a section of the weak HCCH overtone transition near 570 nm, and compare to existing photoacoustic data. Our high quality and reproducible Doppler-limited spectra display a (rms) noise-equivalent absorption of 10−9/cm or 5×10−8 per pass through the sample. Most interesting applications of CW-CRDS include high resolution spectroscopy at low pressure, sub-Doppler absorption spectroscopy in a supersonic jet, and trace-gas detection using compact diode laser sources.

[1]  Richard N. Zare,et al.  Methyl radical measurement by cavity ring-down spectroscopy , 1995 .

[2]  G. Meijer,et al.  A Fourier Transform Cavity Ring Down Spectrometer , 1996, Fourier Transform Spectroscopy.

[3]  E. Riedle,et al.  Homogeneous linewidths of single rotational lines in the ‘‘channel three’’ region of C6H6 , 1984 .

[4]  Michael N. R. Ashfold,et al.  J-dependent linewidths for the (110)-(000) band of the Ã1A" - X1A' transition of HNO studied by cavity ring-down spectroscopy , 1996 .

[5]  C. Wieman,et al.  Atomic beam collimation using a laser diode with a self-locking power-buildup cavity. , 1988, Optics letters.

[6]  Richard N. Zare,et al.  Cavity ring-down spectroscopy for quantitative absorption measurements , 1995 .

[7]  G. Rempe,et al.  Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.

[8]  L. Halonen,et al.  High-resolution photoacoustic overtone spectrum of acetylene near 570 nm using a ring-dye-laser spectrometer , 1991 .

[9]  K. Lehmann,et al.  Cavity ring‐down overtone spectroscopy of HCN, H13CN and HC15N , 1995 .

[10]  Kevin K. Lehmann,et al.  Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta , 1993 .

[11]  David H. Parker,et al.  Coherent cavity ring down spectroscopy , 1994 .

[12]  G. E. Stedman,et al.  Swept-frequency induced optical cavity ringing , 1991 .

[13]  R. Zare,et al.  Cavity ring-down spectroscopy with Fourier-transform-limited light pulses , 1996 .

[14]  D. Z. Anderson,et al.  Mirror reflectometer based on optical cavity decay time. , 1984, Applied optics.

[15]  J. Hodges,et al.  Laser bandwidth effects in quantitative cavity ring-down spectroscopy. , 1996, Applied optics.

[16]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[17]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[18]  J. J. Scherer,et al.  Cavity ring down dye laser spectroscopy of jet-cooled metal clusters : Cu2 and Cu3 , 1990 .

[19]  J. B. Paul,et al.  INFRARED CAVITY RINGDOWN LASER ABSORPTION SPECTROSCOPY (IR-CRLAS) OF JET-COOLED WATER CLUSTERS , 1995 .

[20]  Ming-Chang Lin,et al.  Kinetics of phenyl radical reactions studied by the cavity-ring-down method , 1993 .

[21]  J. Maier,et al.  Cavity ringdown spectroscopy of molecular ions: A2Πu ← X2Σg+ (6−0) transition of N2+ , 1996 .

[22]  D. Spencer,et al.  Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method. , 1980, Applied optics.