Leveraging community metadata for multimodal image ranking

Searching for relevant images given a query term is an important task in nowadays large-scale community databases. The image ranking approach presented in this work represents an image collection as a graph that is built using a multimodal similarity measure based on visual features and user tags. We perform a random walk on this graph to find the most common images. Further we discuss several scalability issues of the proposed approach and show how in this framework queries can be answered fast. Experimental results validate the effectiveness of the presented algorithm.

[1]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[2]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[3]  Antonio Criminisi,et al.  Harvesting Image Databases from the Web , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[4]  Rainer Lienhart,et al.  PLSA on Large Scale Image Databases , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[5]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[6]  Amy Nicole Langville,et al.  Updating Markov Chains with an Eye on Google's PageRank , 2005, SIAM J. Matrix Anal. Appl..

[7]  Mor Naaman,et al.  Generating diverse and representative image search results for landmarks , 2008, WWW.

[8]  Gene H. Golub,et al.  Extrapolation methods for accelerating PageRank computations , 2003, WWW '03.

[9]  Alexander C. Berg,et al.  Finding iconic images , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[10]  Rainer Lienhart,et al.  Multimodal pLSA on visual features and tags , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[11]  Marcel Worring,et al.  Learning tag relevance by neighbor voting for social image retrieval , 2008, MIR '08.

[12]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Svetlana Lazebnik,et al.  Computing iconic summaries of general visual concepts , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[14]  Dong Liu,et al.  Tag ranking , 2009, WWW '09.

[15]  Rainer Lienhart,et al.  Multilayer pLSA for multimodal image retrieval , 2009, CIVR '09.

[16]  Christos Faloutsos,et al.  GCap: Graph-based Automatic Image Captioning , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[17]  Shumeet Baluja,et al.  VisualRank: Applying PageRank to Large-Scale Image Search , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Gang Wang,et al.  Object image retrieval by exploiting online knowledge resources , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[20]  Samy Bengio,et al.  A Discriminative Kernel-Based Approach to Rank Images from Text Queries , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Wei-Ying Ma,et al.  Imagerank : spectral techniques for structural analysis of image database , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[22]  Jon M. Kleinberg,et al.  Mapping the world's photos , 2009, WWW '09.

[23]  Shih-Fu Chang,et al.  Video search reranking through random walk over document-level context graph , 2007, ACM Multimedia.

[24]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[25]  Jan-Michael Frahm,et al.  Modeling and Recognition of Landmark Image Collections Using Iconic Scene Graphs , 2008, International Journal of Computer Vision.

[26]  Yang Song,et al.  Tour the world: Building a web-scale landmark recognition engine , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Jan-Michael Frahm,et al.  Modeling and Recognition of Landmark Image Collections Using Iconic Scene Graphs , 2008, ECCV.