Classical and Quantum Information Theory: An Introduction for the Telecom Scientist

1. Probabilities basics 2. Probability distributions 3. Measuring information 4. Entropy 5. Mutual information and more entropies 6. Differential entropy 7. Algorithmic entropy and Kolmogorov complexity 8. Information coding 9. Optimal coding and compression 10. Integer, arithmetic and adaptive coding 11. Error correction 12. Channel entropy 13. Channel capacity and coding theorem 14. Gaussian channel and Shannon-Hartley theorem 15. Reversible computation 16. Quantum bits and quantum gates 17. Quantum measurments 18. Qubit measurements, superdense coding and quantum teleportation 19. Deutsch/Jozsa alorithms and quantum fourier transform 20. Shor's factorization algorithm 21. Quantum information theory 22. Quantum compression 23. Quantum channel noise and channel capacity 24. Quantum error correction 25. Classical and quantum cryptography Appendix A. Boltzmann's entropy Appendix B. Shannon's entropy Appendix C. Maximum entropy of discrete sources Appendix D. Markov chains and the second law of thermodynamics Appendix E. From discrete to continuous entropy Appendix F. Kraft-McMillan inequality Appendix G. Overview of data compression standards Appendix H. Arithmetic coding algorithm Appendix I. Lempel-Ziv distinct parsing Appendix J. Error-correction capability of linear block codes Appendix K. Capacity of binary communication channels Appendix L. Converse proof of the Channel Coding Theorem Appendix M. Block sphere representation of the qubit Appendix N. Pauli matrices, rotations and unitary operators Appendix O. Heisenberg Uncertainty Principle Appendix P. Two qubit teleportation Appendix Q. Quantum Fourier transform circuit Appendix R. Properties of continued fraction expansion Appendix S. Computation of inverse Fourier transform in the factoring of N=21 through Shor's algorithm Appendix T. Modular arithmetic and Euler's Theorem Appendix U. Klein's inequality Appendix V. Schmidt decomposition of joint pure states Appendix W. State purification Appendix X. Holevo bound Appendix Y. Polynomial byte representation and modular multiplication.

[1]  Don L. Kooken,et al.  Secret and Urgent , 1939 .

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  H. F. Gaines,et al.  Cryptanalysis: A Study of Ciphers and Their Solution , 1956 .

[4]  John C. Hancock,et al.  An Introduction to the Principles of Communication Theory , 1961 .

[5]  D. Kahn The codebreakers : the story of secret writing , 1968 .

[6]  G. Chaitin A Theory of Program Size Formally Identical to Information Theory , 1975, JACM.

[7]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[8]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[9]  Robert G. Gallager,et al.  Variations on a theme by Huffman , 1978, IEEE Trans. Inf. Theory.

[10]  John G. Proakis,et al.  Digital Communications , 1983 .

[11]  Alan L. Mackay,et al.  The Code Breakers , 1984 .

[12]  Inder Jeet Taneja,et al.  Bounds on the redundancy of Huffman codes , 1986, IEEE Trans. Inf. Theory.

[13]  Daniel S. Hirschberg,et al.  Data compression , 1987, CSUR.

[14]  Simon Haykin,et al.  Digital Communications , 2017 .

[15]  Barnett,et al.  Phase properties of the quantized single-mode electromagnetic field. , 1989, Physical review. A, General physics.

[16]  S. Barnett,et al.  On the Hermitian Optical Phase Operator , 1989 .

[17]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[18]  E. Desurvire,et al.  Erbium‐Doped Fiber Amplifiers: Principles and Applications , 1995 .

[19]  Vlatko Vedral,et al.  Basics of quantum computation , 1998, quant-ph/9802065.

[20]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[21]  Simon Singh,et al.  The Code Book , 1999 .

[22]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[23]  How Close to Maximum Entropy Is Amplified Coherent Light , 2000 .

[24]  Partha P. Mitra,et al.  Nonlinear limits to the information capacity of optical fibre communications , 2000, Nature.

[25]  Emmanuel Desurvire,et al.  Erbium-Doped Fiber Amplifiers, Device and System Developments , 2002 .

[26]  Simon Singh,et al.  Book Review: The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography , 2003, ACM Queue.

[27]  Shu Lin,et al.  Error Control Coding , 2004 .

[28]  Guang-Can Guo,et al.  Experimental teleportation of a quantum controlled-NOT gate. , 2004, Physical review letters.

[29]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.