Theoretical Biology and Medical Modelling Identification of Metabolic System Parameters Using Global Optimization Methods

[1]  Feng-Sheng Wang,et al.  Evolutionary optimization with data collocation for reverse engineering of biological networks , 2005, Bioinform..

[2]  William G. Bardsley,et al.  Does any enzyme follow the Michaelis—Menten equation? , 1977, Molecular and Cellular Biochemistry.

[3]  E. Voit,et al.  Challenges for the identification of metabolic pathways from time series data , 2004 .

[4]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling , 2022 .

[5]  Eberhard O. Voit,et al.  The dawn of a new era of metabolic systems analysis , 2004 .

[6]  Jonas S. Almeida,et al.  Decoupling dynamical systems for pathway identification from metabolic profiles , 2004, Bioinform..

[7]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[8]  B. Palsson,et al.  Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli , 2003, Journal of bacteriology.

[9]  Masaru Tomita,et al.  Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..

[10]  A. S. Torralba,et al.  Experimental test of a method for determining causal connectivities of species in reactions , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Eberhard O Voit,et al.  Neural-network-based parameter estimation in S-system models of biological networks. , 2003, Genome informatics. International Conference on Genome Informatics.

[12]  E. Voit,et al.  Pathway Analysis and Optimization in Metabolic Engineering , 2002 .

[13]  P. I. Barton,et al.  Construction of Convex Relaxations Using Automated Code Generation Techniques , 2002 .

[14]  Eberhard O Voit,et al.  Metabolic modeling: a tool of drug discovery in the post-genomic era. , 2002, Drug discovery today.

[15]  Masahiro Okamoto,et al.  Development of a System for the Inference of Large Scale Genetic Networks , 2000, Pacific Symposium on Biocomputing.

[16]  E O Voit,et al.  Canonical modeling: review of concepts with emphasis on environmental health. , 2000, Environmental health perspectives.

[17]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[18]  P. I. Barton,et al.  DAEPACK: An Open Modeling Environment for Legacy Models , 2000 .

[19]  A Sorribas,et al.  Mathematical models of purine metabolism in man. , 1998, Mathematical biosciences.

[20]  E. Voit,et al.  An indirect optimization method for biochemical systems: description of method and application to the maximization of the rate of ethanol, glycerol, and carbohydrate production in Saccharomyces cerevisiae. , 1997, Biotechnology and bioengineering.

[21]  J E Bailey,et al.  MCA has more to say. , 1996, Journal of theoretical biology.

[22]  D. Fell Understanding the Control of Metabolism , 1996 .

[23]  Edward M. B. Smith,et al.  On the optimal design of continuous processes , 1996 .

[24]  M. Cascante,et al.  Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature. , 1995, Mathematical biosciences.

[25]  A Sorribas,et al.  Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model validation and dynamic behavior. , 1995, Mathematical biosciences.

[26]  A Sorribas,et al.  Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: steady-state analysis. , 1995, Mathematical biosciences.

[27]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .

[28]  Michael A. Savageau,et al.  Chapter 5 Enzyme kinetics in vitro and in vivo: Michaelis-Menten revisited , 1995 .

[29]  E O Voit,et al.  Optimization in integrated biochemical systems , 1992, Biotechnology and bioengineering.

[30]  Eberhard O. Voit,et al.  Canonical nonlinear modeling : S-system approach to understanding complexity , 1991 .

[31]  J. Bailey,et al.  Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae , 1990 .

[32]  A Sorribas,et al.  Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways. , 1989, Mathematical biosciences.

[33]  E. Voit,et al.  Recasting nonlinear differential equations as S-systems: a canonical nonlinear form , 1987 .

[34]  M A Savageau,et al.  Accuracy of alternative representations for integrated biochemical systems. , 1987, Biochemistry.

[35]  Eberhard O. Voit,et al.  Power-Low Approach to Modelng Biological Systems : III. Methods of Analysis , 1982 .

[36]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[37]  K. F. Tipton,et al.  Biochemical systems analysis: A study of function and design in molecular biology , 1978 .

[38]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[39]  Reinhart Heinrich,et al.  A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. , 1974, European journal of biochemistry.

[40]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[41]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[42]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .