A Chromatin Landmark and Transcription Initiation at Most Promoters in Human Cells

[1]  Suresh Cuddapah,et al.  The genomic landscape of histone modifications in human T cells , 2006, Proceedings of the National Academy of Sciences.

[2]  John T. Lis,et al.  Breaking barriers to transcription elongation , 2006, Nature Reviews Molecular Cell Biology.

[3]  N. Hannett,et al.  Activated Signal Transduction Kinases Frequently Occupy Target Genes , 2006, Science.

[4]  Richard Axel,et al.  Interchromosomal Interactions and Olfactory Receptor Choice , 2006, Cell.

[5]  Tom Misteli,et al.  Chromatin in pluripotent embryonic stem cells and differentiation , 2006, Nature Reviews Molecular Cell Biology.

[6]  Marc Bühler,et al.  Tethering RITS to a Nascent Transcript Initiates RNAi- and Heterochromatin-Dependent Gene Silencing , 2006, Cell.

[7]  H. Stunnenberg,et al.  Histone modification patterns associated with the human X chromosome , 2006, EMBO reports.

[8]  Megan F. Cole,et al.  Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells , 2006, Cell.

[9]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[10]  Stephan Sauer,et al.  Chromatin signatures of pluripotent cell lines , 2006, Nature Cell Biology.

[11]  T. Misteli,et al.  Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. , 2006, Developmental cell.

[12]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[13]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[14]  Megan F. Cole,et al.  Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast , 2005, Cell.

[15]  T. Hughes,et al.  BUR Kinase Selectively Regulates H3 K4 Trimethylation and H2B Ubiquitylation through Recruitment of the PAF Elongation Complex , 2005, Current Biology.

[16]  Leah Barrera,et al.  A high-resolution map of active promoters in the human genome , 2005, Nature.

[17]  R. Martienssen,et al.  RNA Polymerase II Is Required for RNAi-Dependent Heterochromatin Assembly , 2005, Science.

[18]  Clifford A. Meyer,et al.  Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells , 2005, Genome Biology.

[19]  J. Mellor,et al.  Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription. , 2005, Molecular cell.

[20]  A. Shilatifard,et al.  A COMPASS in the voyage of defining the role of trithorax/MLL‐containing complexes: Linking leukemogensis to covalent modifications of chromatin , 2005, Journal of cellular biochemistry.

[21]  G. Helt,et al.  Transcriptional Maps of 10 Human Chromosomes at 5-Nucleotide Resolution , 2005, Science.

[22]  Tony Kouzarides,et al.  Spatial Distribution of Di- and Tri-methyl Lysine 36 of Histone H3 at Active Genes* , 2005, Journal of Biological Chemistry.

[23]  Philip Lijnzaad,et al.  Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. , 2005, Molecular cell.

[24]  I. Khrebtukova,et al.  Transcriptome Profiling of Human and Murine ESCs Identifies Divergent Paths Required to Maintain the Stem Cell State , 2005, Stem cells.

[25]  Eric S. Lander,et al.  Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse , 2005, Cell.

[26]  Tatiana A. Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[27]  Leonard I Zon,et al.  The clinical potential of stem cells. , 2004, Current opinion in cell biology.

[28]  A. Trounson,et al.  Human embryonic stem cells: prospects for development , 2004, Development.

[29]  Danny Reinberg,et al.  Elongation by RNA polymerase II: the short and long of it. , 2004, Genes & development.

[30]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[31]  Ulrike Böhme,et al.  Gene-Ontology analysis reveals association of tissue-specific 5' CpG-island genes with development and embryogenesis. , 2004, Human molecular genetics.

[32]  I. Khrebtukova,et al.  MPSS profiling of human embryonic stem cells , 2004, BMC Developmental Biology.

[33]  S. Munir Alam,et al.  C-terminal Repeat Domain Kinase I Phosphorylates Ser2 and Ser5 of RNA Polymerase II C-terminal Domain Repeats* , 2004, Journal of Biological Chemistry.

[34]  Charles Kooperberg,et al.  The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. , 2004, Genes & development.

[35]  K. Guegler,et al.  Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation , 2004, Nature Biotechnology.

[36]  Peter A. Jones,et al.  Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Chad A. Cowan,et al.  Derivation of embryonic stem-cell lines from human blastocysts. , 2004, The New England journal of medicine.

[39]  Ryan T Rodriguez,et al.  Unique gene expression signatures of independently-derived human embryonic stem cell lines. , 2004, Human molecular genetics.

[40]  G. Kay,et al.  Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. , 2004, Molecular cell.

[41]  Gary M Hellmann,et al.  Confirming microarray data—is it really necessary? , 2003, Genomics.

[42]  Tony Kouzarides,et al.  Histone H3 lysine 4 methylation patterns in higher eukaryotic genes , 2004, Nature Cell Biology.

[43]  Ryan D. Morin,et al.  The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). , 2004, Genome research.

[44]  Nicholas Proudfoot,et al.  Isw1 Chromatin Remodeling ATPase Coordinates Transcription Elongation and Termination by RNA Polymerase II , 2003, Cell.

[45]  A. Brivanlou,et al.  Molecular signature of human embryonic stem cells and its comparison with the mouse. , 2003, Developmental biology.

[46]  G. Cagney,et al.  Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II , 2003, Molecular and Cellular Biology.

[47]  Andrea Cocito,et al.  Genomic targets of the human c-Myc protein. , 2003, Genes & development.

[48]  J. Yates,et al.  The Set2 Histone Methyltransferase Functions through the Phosphorylated Carboxyl-terminal Domain of RNA Polymerase II* , 2003, The Journal of Biological Chemistry.

[49]  Kevin Struhl,et al.  Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. , 2003, Molecular cell.

[50]  M. Johnston,et al.  The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. , 2003, Molecular cell.

[51]  Christoph H Borchers,et al.  Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. , 2003, Genes & development.

[52]  Steven P. Gygi,et al.  Association of the Histone Methyltransferase Set2 with RNA Polymerase II Plays a Role in Transcription Elongation* , 2002, The Journal of Biological Chemistry.

[53]  Dimitris Thanos,et al.  Deciphering the Transcriptional Histone Acetylation Code for a Human Gene , 2002, Cell.

[54]  B. Turner,et al.  Cellular Memory and the Histone Code , 2002, Cell.

[55]  B. Cairns,et al.  Transcriptional inhibition of genes with severe histone h3 hypoacetylation in the coding region. , 2002, Molecular cell.

[56]  Stuart L. Schreiber,et al.  Active genes are tri-methylated at K4 of histone H3 , 2002, Nature.

[57]  A. Dvir,et al.  Promoter escape by RNA polymerase II. , 2002, Biochimica et biophysica acta.

[58]  M. Hampsey,et al.  Connecting the DOTs: covalent histone modifications and the formation of silent chromatin. , 2002, Trends in genetics : TIG.

[59]  Stuart L. Schreiber,et al.  Methylation of histone H3 Lys 4 in coding regions of active genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[61]  I. Talianidis,et al.  Coordination of PIC Assembly and Chromatin Remodeling During Differentiation-Induced Gene Activation , 2002, Science.

[62]  P. Grant,et al.  Set2 Is a Nucleosomal Histone H3-Selective Methyltransferase That Mediates Transcriptional Repression , 2002, Molecular and Cellular Biology.

[63]  Tim Hui-Ming Huang,et al.  Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. , 2002, Genes & development.

[64]  T. Volkert,et al.  E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. , 2002, Genes & development.

[65]  Michael Ruogu Zhang,et al.  Computational identification of promoters and first exons in the human genome , 2002, Nature Genetics.

[66]  J. Greenblatt,et al.  Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. , 2001, Genes & development.

[67]  L. Duret,et al.  Determinants of CpG islands: expression in early embryo and isochore structure. , 2001, Genome research.

[68]  Nevan J. Krogan,et al.  COMPASS: A complex of proteins associated with a trithorax-related SET domain protein , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[69]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[70]  A. Shilatifard,et al.  Control of elongation by RNA polymerase II. , 2000, Trends in biochemical sciences.

[71]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[72]  D. Sterner,et al.  Acetylation of Histones and Transcription-Related Factors , 2000, Microbiology and Molecular Biology Reviews.

[73]  R. Guigó,et al.  GeneID in Drosophila. , 2000, Genome research.

[74]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[75]  R. Roeder,et al.  A novel RNA polymerase II‐containing complex potentiates Tat‐enhanced HIV‐1 transcription , 1999, The EMBO journal.

[76]  K. Struhl,et al.  Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme , 1999, Nature.

[77]  Ping Wei,et al.  A Novel CDK9-Associated C-Type Cyclin Interacts Directly with HIV-1 Tat and Mediates Its High-Affinity, Loop-Specific Binding to TAR RNA , 1998, Cell.

[78]  J. Lis,et al.  Direct cloning of DNA that interacts in vivo with a specific protein: application to RNA polymerase II and sites of pausing in Drosophila. , 1998, Nucleic acids research.

[79]  J. Lis,et al.  Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. , 1998, Cold Spring Harbor symposia on quantitative biology.

[80]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[81]  M. Groudine,et al.  Common mechanisms for the control of eukaryotic transcriptional elongation , 1993, BioEssays : news and reviews in molecular, cellular and developmental biology.

[82]  M. Mathews,et al.  HIV-1 Tat overcomes inefficient transcriptional elongation in vitro. , 1993, Journal of molecular biology.

[83]  J. H. Waterborg Dynamic methylation of alfalfa histone H3. , 1993, The Journal of biological chemistry.

[84]  H. Prydz,et al.  CpG islands as gene markers in the human genome. , 1992, Genomics.

[85]  M. Ptashne A Genetic Switch , 1986 .

[86]  D. Solter,et al.  Developmental stage-specific antigens during mouse embryogenesis. , 1979, Current topics in developmental biology.

[87]  D. Bauer Constructing Confidence Sets Using Rank Statistics , 1972 .