Atomistic-Based Finite Element Simulation of Carbon Nanotubes

[1]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[2]  Haiyan Hu,et al.  FLEXURAL WAVE PROPAGATION IN SINGLE-WALLED CARBON NANOTUBES , 2005 .

[3]  P. Ajayan,et al.  Microfabrication technology: Organized assembly of carbon nanotubes , 2002, Nature.

[4]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[5]  Yijun Liu,et al.  Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites , 2004 .

[6]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[7]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .

[8]  Shengqing Zhu,et al.  Wave propagation in multiwall carbon nanotubes embedded in a matrix material , 2008 .

[9]  Christian Thomsen,et al.  Carbon Nanotubes: Basic Concepts and Physical Properties , 2004 .

[10]  Donald W. Brenner,et al.  Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations , 1998 .

[11]  Michael Ortiz,et al.  A cohesive approach to thin-shell fracture and fragmentation , 2005 .

[12]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[13]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[14]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[15]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[16]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[17]  Jos Stam,et al.  Evaluation of Loop Subdivision Surfaces , 2010 .

[18]  A. Pantano,et al.  Multiwalled carbon nanotube reinforced polymer composites , 2008 .

[19]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[20]  Vladimir Sladek,et al.  Meshless local Petrov–Galerkin (MLPG) method for Reissner–Mindlin plates under dynamic load , 2007 .

[21]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[22]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[23]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[24]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[25]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[26]  P. M. Naghdi,et al.  The Theory of Shells and Plates , 1973 .

[27]  M. Asghar Bhatti,et al.  Nonlinear static and dynamic analysis of plates , 1985 .

[28]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[29]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[30]  Ted Belytschko,et al.  Finite element methods for the non‐linear mechanics of crystalline sheets and nanotubes , 2004 .

[31]  Ted Belytschko,et al.  Continuum Mechanics Modeling and Simulation of Carbon Nanotubes , 2005 .

[32]  G. Zanzotto,et al.  The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals , 1996 .

[33]  A. Pantano,et al.  An Equivalent Orthotropic Representation of the Nonlinear Elastic Behavior of Multiwalled Carbon Nanotubes , 2007 .

[34]  Zhou Jianjun,et al.  STRAIN ENERGY AND YOUNG'S MODULUS OF SINGLE-WALL CARBON NANOTUBES CALCULATED FROM ELECTRONIC ENERGY-BAND THEORY , 2000 .

[35]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[36]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[37]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[38]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[39]  Sanjiv S Gambhir,et al.  A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. , 2008, Nature nanotechnology.

[40]  Han Gi Chae,et al.  Rigid-rod polymeric fibers , 2006 .

[41]  J. Ericksen,et al.  On the Cauchy—Born Rule , 2008 .

[42]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[43]  Kingsuk Mukhopadhyay,et al.  Carbon Nanotubes and Related Structures , 2008 .

[44]  Peter W. Chung,et al.  On a formulation for a multiscale atomistic-continuum homogenization method , 2003 .

[45]  M. Leamy Bulk dynamic response modeling of carbon nanotubes using an intrinsic finite element formulation incorporating interatomic potentials , 2007 .

[46]  A. Pantano,et al.  Mixed finite element-tight-binding electromechanical analysis of carbon nanotubes , 2004 .

[47]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.