Physics-based simulation of single-event effects

This paper reviews techniques for physics-based device-level simulation of single-event effects (SEEs) in Si microelectronic devices and integrated circuits. Issues for device modeling of SEE are discussed in the context of providing physical insight into mechanisms contributing to SEE as well as providing predictive capabilities for calculation of SEE rates. Recent advances in device simulation methodology are detailed, including full-cell simulations and cross-section calculations from first principles. Examples of the application of physics-based SEE simulations are presented, including scaling trends in soft error sensitivity as predicted by device simulation, single-event latchup (SEL) simulations in CMOS structures, and recent simulations of single-event transient (SET) production and propagation in digital logic circuits.

[1]  Lloyd W. Massengill,et al.  Analysis of the influence of MOS device geometry on predicted SEU cross sections , 1999 .

[2]  R. Koga,et al.  Single Event Error Immune CMOS RAM , 1982, IEEE Transactions on Nuclear Science.

[3]  P. T. McDonald,et al.  Practical approach to ion track energy distribution , 1988 .

[4]  Kody Varahramyan,et al.  Three-dimensional modeling and evaluation of body tied versus floating body SOI MOSFETs , 1999 .

[5]  Lloyd W. Massengill,et al.  Basic mechanisms and modeling of single-event upset in digital microelectronics , 2003 .

[6]  H. T. Weaver,et al.  Two-Dimensional Simulation of Single Event Indujced Bipolar Current in CMOS Structures , 1984, IEEE Transactions on Nuclear Science.

[7]  Olaf Schenk,et al.  The effects of unsymmetric matrix permutations and scalings in semiconductor device and circuit simulation , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  N. Ghoniem,et al.  The Size Effect of Ion Charge Tracks on Single Event Multiple-Bit Upset , 1987, IEEE Transactions on Nuclear Science.

[9]  Robert A. Reed,et al.  Charge collection spectroscopy , 1993 .

[10]  Edward M. Buturla,et al.  Finite-element analysis of semiconductor devices: The FIELDAY program , 1981, IBM Journal of Research and Development.

[11]  D. Binder,et al.  Satellite Anomalies from Galactic Cosmic Rays , 1975, IEEE Transactions on Nuclear Science.

[12]  Larry D. Edmonds A time-dependent charge-collection efficiency for diffusion , 2001 .

[13]  Frédéric Wrobel,et al.  Incidence of multi-particle events on soft error rates caused by n-Si nuclear reactions , 2000 .

[14]  James E. Turner,et al.  Heavy-Ion Track Structure in Silicon , 1979, IEEE Transactions on Nuclear Science.

[15]  Marty R. Shaneyfelt,et al.  Charge collection and SEU from angled ion strikes , 1997 .

[16]  C. L. Axness,et al.  Mechanisms Leading to Single Event Upset , 1986, IEEE Transactions on Nuclear Science.

[17]  J. Ziegler THE STOPPING AND RANGE OF IONS IN SOLIDS , 1988 .

[18]  Marty R. Shaneyfelt,et al.  Impact of technology trends on SEU in CMOS SRAMs , 1996 .

[19]  V. Ferlet-Cavrois,et al.  Comparison of the sensitivity to heavy ions of SRAM's in different SIMOX technologies , 1994, IEEE Electron Device Letters.

[20]  Changhong Dai,et al.  Impact of CMOS process scaling and SOI on the soft error rates of logic processes , 2001, 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184).

[21]  Daniel M. Fleetwood,et al.  Implementing QML for radiation hardness assurance , 1990 .

[22]  C. Detcheverry,et al.  SEU critical charge and sensitive area in a submicron CMOS technology , 1997 .

[23]  H. T. Weaver Soft error stability of p-well versus n-well CMOS latches derived from 2-D transient simulations , 1988, Technical Digest., International Electron Devices Meeting.

[24]  P. Dodd,et al.  Production and propagation of single-event transients in high-speed digital logic ICs , 2004, IEEE Transactions on Nuclear Science.

[25]  Robert B. Hammond,et al.  An Approach to Measure Ultrafast-Funneling-Current Transients , 1986, IEEE Transactions on Nuclear Science.

[26]  B. D. Shafer,et al.  The design of radiation-hardened ICs for space: a compendium of approaches , 1988, Proc. IEEE.

[27]  E. Petersen,et al.  Soft Errors Due to Protons in the Radiation Belt , 1981, IEEE Transactions on Nuclear Science.

[28]  D. D. Tang,et al.  A circuit concept for reducing soft-error in high-speed memory cells , 1987, 1987 Symposium on VLSI Circuits.

[29]  H.T. Weaver,et al.  RAM cell recovery mechanisms following high-energy ion strikes , 1987, IEEE Electron Device Letters.

[30]  F. W. Sexton,et al.  Microbeam studies of single-event effects , 1996 .

[31]  P. Dodd,et al.  Various SEU conditions in SRAM studied by 3-D device simulation , 2001 .

[32]  M. Baze,et al.  Comparison of error rates in combinational and sequential logic , 1997 .

[33]  G. E. Davis,et al.  Transient Radiation Effects in SOI Memories , 1985, IEEE Transactions on Nuclear Science.

[34]  P. Dodd,et al.  Radiation effects in SOI technologies , 2003 .

[35]  Hideyuki Iwata,et al.  Numerical analysis of alpha-particle-induced soft errors in SOI MOS devices , 1992 .

[36]  J. Choma,et al.  Single Event Upset in SOS Integrated Circuits , 1987, IEEE Transactions on Nuclear Science.

[37]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[38]  J. L. Wirth,et al.  The Analysis of Radiation Effects in Semiconductor Junction Devices , 1967 .

[39]  Y. Yagil,et al.  A systematic approach to SER estimation and solutions , 2003, 2003 IEEE International Reliability Physics Symposium Proceedings, 2003. 41st Annual..

[40]  A. B. Campbell,et al.  Alpha-, boron-, silicon- and iron-ion-induced current transients in low-capacitance silicon and GaAs diodes , 1988 .

[41]  M. R. Pinto,et al.  The effects of ion track structure in simulating single event phenomena , 1993, RADECS 93. Second European Conference on Radiation and its Effects on Components and Systems (Cat. No.93TH0616-3).

[42]  D. S. Walsh,et al.  SEU-sensitive volumes in bulk and SOI SRAMs from first-principles calculations and experiments , 2001 .

[43]  Marty R. Shaneyfelt,et al.  Impact of substrate thickness on single-event effects in integrated circuits , 2001 .

[44]  Sherra E. Diehl,et al.  An Improved Single Event Resistive-Hardening Technique for CMOS Static RAMS , 1986, IEEE Transactions on Nuclear Science.

[45]  Allan H. Johnston,et al.  The influence of VLSI technology evolution on radiation-induced latchup in space systems , 1996 .

[46]  M. R. Pinto,et al.  Numerical simulation of heavy ion charge generation and collection dynamics , 1993 .

[47]  O. Flament,et al.  Study of transient current induced by heavy-ion in NMOS/SOI transistors , 2002 .

[48]  O. Fageeha,et al.  Distribution of radial energy deposition around the track of energetic charged particles in silicon , 1994 .

[49]  Kartikeya Mayaram,et al.  Transient three-dimensional mixed-level circuit and device simulation: algorithms and applications , 1991, 1991 IEEE International Conference on Computer-Aided Design Digest of Technical Papers.

[50]  Mark R. Pinto,et al.  Device Simulation for Silicon ULSI , 1991 .

[51]  R. R. O'Brien,et al.  Dynamics of Charge Collection from Alpha-Particle Tracks in Integrated Circuits , 1981, 19th International Reliability Physics Symposium.

[52]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[53]  A. B. Campbell,et al.  Comparison of experimental charge collection waveforms with PISCES calculations , 1991 .

[54]  R. R. O'Brien,et al.  Collection of charge from alpha-particle tracks in silicon devices , 1983, IEEE Transactions on Electron Devices.

[55]  H. L. Grubin,et al.  Simulation of Charge Collection in a Multilayer Device , 1985, IEEE Transactions on Nuclear Science.

[56]  O. Musseau Single-event effects in SOI technologies and devices , 1996 .

[57]  Robert Ecoffet,et al.  SEE results using high energy ions , 1995 .

[58]  D. S. Walsh,et al.  Single-event upset and snapback in silicon-on-insulator devices and integrated circuits , 2000 .

[59]  S. P. Buchner,et al.  Laboratory tests for single-event effects , 1996 .

[60]  R. L. Woodruff,et al.  Three-dimensional numerical simulation of single event upset of an SRAM cell , 1993 .

[61]  R. J. McPartland Circuit simulations of alpha-particle-induced soft errors in MOS dynamic RAMs , 1981 .

[62]  R. R. O'Brien,et al.  A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices , 1981, IEEE Electron Device Letters.

[63]  G. L. Hash,et al.  Impact of ion energy on single-event upset , 1998 .

[64]  H. T. Weaver,et al.  Comparison of 2D Memory SEU Transport Simulation with Experiments , 1985, IEEE Transactions on Nuclear Science.

[65]  Paul E. Dodd,et al.  Device simulation of charge collection and single-event upset , 1996 .

[66]  Jr. Leonard R. Rockett Simulated SEU hardened scaled CMOS SRAM cell design using gated resistors , 1992 .

[67]  T. Toyabe,et al.  The scaling law of alpha-particle induced soft errors for VLSI's , 1986, 1986 International Electron Devices Meeting.

[68]  H. L. Grubin,et al.  Numerical simulation of charge collection in two- and three-dimensional silicon diodes—a comparison , 1986 .

[69]  W. A. Kolasinski,et al.  Cost-effective numerical simulation of SEU , 1988 .

[70]  L. Tosti,et al.  Charge enhancement effect in NMOS bulk transistors induced by heavy ion Irradiation-comparison with SOI , 2004, IEEE Transactions on Nuclear Science.

[71]  Ping Yang,et al.  SIERRA: a 3-D device simulator for reliability modeling , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[72]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[73]  M. Xapsos Applicability of LET to single events in microelectronic structures , 1992 .

[74]  Wojtek Hajdas,et al.  Low energy proton induced SEE in memories , 1997 .

[75]  A. E. Waskiewicz,et al.  Experimental and simulation study of the effects of cosmic particles on CMOS/SOS RAMs , 1990 .

[76]  R. Koga,et al.  Scaling studies of CMOS SRAM soft-error tolerances—From 16K to 256K , 1987, 1987 International Electron Devices Meeting.

[77]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[78]  Robert Katz,et al.  The radial distribution of dose around the path of a heavy ion in liquid water , 1986 .

[79]  J. C. Pickel,et al.  Rate prediction for single event effects-a critique , 1992 .

[80]  Stephen LaLumondiere,et al.  Correlation of picosecond laser-induced latchup and energetic particle-induced latchup in CMOS test structures , 1995 .

[81]  R. Koga,et al.  Experimental and analytical investigation of single event, multiple bit upsets in poly-silicon load, 64 K*1 NMOS SRAMs , 1988 .

[82]  W. R. Eisenstadt,et al.  CMOS VLSI single event transient characterization , 1989 .

[83]  John Choma,et al.  Mixed-mode PISCES-SPICE coupled circuit and device solver , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[84]  John R. Hauser,et al.  Simulation Approach for Modeling Single Event Upsets on Advanced CMOS SRAMS , 1985, IEEE Transactions on Nuclear Science.

[85]  R. Dennard,et al.  Theoretical determination of the temporal and spatial structure of /spl alpha/-particle induced electron-hole pair generation in silicon , 2000 .

[86]  F. W. Sexton,et al.  Critical charge concepts for CMOS SRAMs , 1995 .

[87]  Robert Katz,et al.  An analytic representation of the radial distribution of dose from energetic heavy ions in water, Si, LiF, NaI, and SiO2 , 1990 .

[88]  Kartikeya Mayaram,et al.  Algorithms for transient three-dimensional mixed-level circuit and device simulation , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[89]  J. Pelloie,et al.  Laser probing of bipolar amplification in 0.25-/spl mu/m MOS/SOI transistors , 2000 .

[90]  Dipen N. Sinha,et al.  Transient Measurements of Ultrafast Charge Collection in Semicouductor Diodes , 1987, IEEE Transactions on Nuclear Science.

[91]  R. Koga,et al.  Numerical Simulation of SEU Induced Latch-Up , 1986, IEEE Transactions on Nuclear Science.

[92]  H. Saito,et al.  SEU resistance in advanced SOI-SRAMs fabricated by commercial technology using a rad-hard circuit design , 2002 .

[93]  J. S. Browning,et al.  Processing Enhanced SEU Tolerance in High Density SRAMs , 1987, IEEE Transactions on Nuclear Science.

[94]  Gernot Heiser,et al.  Three-dimensional numerical semiconductor device simulation: algorithms, architectures, results , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[95]  Lloyd W. Massengill,et al.  Single event mirroring and DRAM sense amplifier designs for improved single-event-upset performance , 1994 .

[96]  Lloyd W. Massengill,et al.  A proposed SEU tolerant dynamic random access memory (DRAM) cell , 1994 .

[97]  Robert Katz,et al.  Energy Deposition by Electron Beams and δ Rays , 1968 .

[98]  P. S. Winokur,et al.  Three-dimensional simulation of charge collection and multiple-bit upset in Si devices , 1994 .

[99]  Jack A. Mandelman,et al.  The use of simulation in semiconductor technology development , 1990 .

[100]  Lloyd W. Massengill,et al.  Effects of process parameter distributions and ion strike locations on SEU cross-section data (CMOS SRAMs) , 1993 .

[101]  Robert Ecoffet,et al.  SEU response of an entire SRAM cell simulated as one contiguous three dimensional device domain , 1998 .

[102]  B. D. Shafer,et al.  Considerations for Single Event Immune VLSI Logic , 1983, IEEE Transactions on Nuclear Science.

[103]  J. A. Zoutendyk,et al.  Experimental Evidence for a New Single-Event Upset (SEU) Mode in a CMOS SRAM Obtained from Model Verification , 1987, IEEE Transactions on Nuclear Science.

[104]  Larry D. Edmonds,et al.  Electric currents through ion tracks in silicon devices , 1998 .

[105]  H.T. Weaver,et al.  Memory SEU simulations using 2-D transport calculations , 1985, IEEE Electron Device Letters.

[106]  H. Saito,et al.  Analysis of body-tie effects on SEU resistance of advanced FD-SOI SRAMs through mixed-mode 3-D Simulations , 2004, IEEE Transactions on Nuclear Science.

[107]  John A. Zoutendyk,et al.  Investigation of single-event upset (SEU) in an advanced bipolar process , 1988 .

[108]  P. Eaton,et al.  Soft error rate mitigation techniques for modern microcircuits , 2002, 2002 IEEE International Reliability Physics Symposium. Proceedings. 40th Annual (Cat. No.02CH37320).

[109]  R. Koga,et al.  SEU characterization of hardened CMOS SRAMs using statistical analysis of feedback delay in memory cells , 1989 .

[110]  J.A. Seitchik,et al.  Single event charge collection modeling in CMOS multi-junctions structure , 1986, 1986 International Electron Devices Meeting.