Electrochemical CO2 reduction improved by tuning the Cu-Cu distance in halogen-bridged dinuclear cuprous coordination polymers

[1]  R. Grubbs,et al.  Selective CO2 Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface. , 2021, Journal of the American Chemical Society.

[2]  The role of atomic carbon in directing electrochemical CO(2) reduction to multicarbon products , 2020 .

[3]  Jieshan Qiu,et al.  Recent advances in innovative strategies for the CO2 electroreduction reaction , 2021 .

[4]  X. Lou,et al.  Atomically Dispersed Reactive Centers for Electrocatalytic CO2 Reduction and Water Splitting , 2020, Angewandte Chemie.

[5]  C. Dinh,et al.  Gas diffusion electrode design for electrochemical carbon dioxide reduction. , 2020, Chemical Society reviews.

[6]  Lai Xu,et al.  Breaking Linear Scaling Relationship by Compositional and Structural Crafting of Ternary Cu-Au/Ag Nanoframes for Electrocatalytic Ethylene Production. , 2020, Angewandte Chemie.

[7]  M. Chi,et al.  Controlling the Surface Oxidation of Cu Nanowires Improves Their Catalytic Selectivity and Stability toward C2+ Products in CO2 Reduction. , 2020, Angewandte Chemie.

[8]  T. Nonaka,et al.  Self-assembled Cuprous Coordination Polymer as a Catalyst for CO2 Electrochemical Reduction into C2 Products , 2020 .

[9]  Fuping Pan,et al.  Designing CO2 reduction electrode materials by morphology and interface engineering , 2020 .

[10]  T. Xu,et al.  Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper , 2020, Nature Energy.

[11]  Jun Ho Jang,et al.  Electrocatalytic Reduction of CO2 to Ethylene by Molecular Cu-Complex Immobilized on Graphitized Mesoporous Carbon. , 2020, Small.

[12]  Wilson A. Smith,et al.  Facet-Dependent Selectivity of Cu Catalysts in Electrochemical CO2 Reduction at Commercially Viable Current Densities , 2020, ACS catalysis.

[13]  J. Vávra,et al.  Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. , 2020, Angewandte Chemie.

[14]  Xin Wang,et al.  Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts , 2020, Energy & Environmental Science.

[15]  Joshua A. Schaidle,et al.  Transforming the carbon economy: challenges and opportunities in the convergence of low-cost electricity and reductive CO2 utilization , 2020 .

[16]  M. Baik,et al.  Ligand Controlled Product Selectivity in the Electrochemical Carbon Dioxide Reduction Using Manganese Bipyridine Catalysts. , 2020, Journal of the American Chemical Society.

[17]  Haotian Wang,et al.  Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products , 2020, Science Advances.

[18]  Jyhfu Lee,et al.  Controlling the Oxidation State of Cu Electrode and Reaction Intermediates for Electrochemical CO2 Reduction to Ethylene. , 2020, Journal of the American Chemical Society.

[19]  Christine M. Gabardo,et al.  Molecular tuning of CO2-to-ethylene conversion , 2019, Nature.

[20]  M. Fontecave,et al.  Electroreduction of CO2 on Single-Site Copper-Nitrogen-Doped Carbon Material: Selective Formation of Ethanol and Reversible Restructuration of the Metal Sites. , 2019, Angewandte Chemie.

[21]  F. Calle‐Vallejo,et al.  Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels , 2019, Nature Energy.

[22]  K. Elouarzaki,et al.  Recent Trends, Benchmarking, and Challenges of Electrochemical Reduction of CO2 by Molecular Catalysts , 2019, Advanced Energy Materials.

[23]  T. Jaramillo,et al.  What would it take for renewably powered electrosynthesis to displace petrochemical processes? , 2019, Science.

[24]  E. Reisner,et al.  Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes , 2019, Chemical reviews.

[25]  Zhi‐Yuan Gu,et al.  Cathodized copper porphyrin metal–organic framework nanosheets for selective formate and acetate production from CO2 electroreduction† †Electronic supplementary information (ESI) available: Synthetic experimental details and additional figures (XRD and SEM data). See DOI: 10.1039/c8sc04344b , 2018, Chemical science.

[26]  X. Xia,et al.  A Water‐Soluble Cu Complex as Molecular Catalyst for Electrocatalytic CO2 Reduction on Graphene‐Based Electrodes , 2018, Advanced Energy Materials.

[27]  I. Sharp,et al.  The Technical and Energetic Challenges of Separating (Photo)Electrochemical Carbon Dioxide Reduction Products , 2018 .

[28]  Ke R. Yang,et al.  Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction , 2018, Nature Communications.

[29]  Teruhiko Saito,et al.  Crystalline Copper(II) Phthalocyanine Catalysts for Electrochemical Reduction of Carbon Dioxide in Aqueous Media , 2017 .

[30]  T Uruga,et al.  Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms. , 2012, The Review of scientific instruments.

[31]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[32]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[33]  M. Head‐Gordon,et al.  Systematic optimization of long-range corrected hybrid density functionals. , 2008, The Journal of chemical physics.

[34]  Noboru Kitamura,et al.  Luminescence ranging from red to blue: a series of copper(I)-halide complexes having rhombic {Cu2(mu-X)2} (X = Br and I) units with N-heteroaromatic ligands. , 2005, Inorganic chemistry.

[35]  Xiao‐Ming Chen,et al.  A photoluminescent polymeric chain complex: synthesis and structure of [(PPh3)2Cu2(μ-I)2(μ-4,4′-bpy)]n , 2003 .

[36]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[37]  A. Jacobson,et al.  A Polymeric Structure Containing Cu 2 Cl 2 Units Bridged by 4,4‘-Bipyridine: (PPh 3 ) 2 Cu 2 (μ-Cl) 2 (μ-4,4‘-bipyridine) , 1997 .

[38]  H. Konno,et al.  Ylide–Metal Complexes. XIII. An X-Ray Photoelectron Spectroscopic Study of Bis(dimethylsulfoxonium methylide)gold Chloride , 1987 .

[39]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[40]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .