Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li ( Ni1 / 3Co1 / 3Mn1 / 3 ) O 2

Galvanostatic intermittent titration technique (GITT) at 25 and 50°C and electrochemical impedance spectroscopy (EIS) at 25°C as a function of cell voltage and cycle number were performed on the layered oxide cathode, Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 . The Li-ion diffusion coefficient D Li (GITT) obtained for GITT was stable with a value of ∼3 × 10 -10 cm 2 /s in the voltage range, 3.8-4.4 V vs. Li. The D Li (EIS) was higher by an order of magnitude than the D Li (GITT) in the above voltage range. A minimum in the D Li vs. voltage curve was observed at ∼3.7 V coinciding with the voltage-plateau region in the charge-discharge cycling curves, indicating a possible reversible structural phase transition or order-disorder transition in the compound. EIS studies as a function of cycle number show that the surface film and the bulk contribution to the cell resistances remain stable with cycling. The proportional increase in charge-transfer resistance (R et ) with cycling observed when charged to 50 mAh/g (∼3.7 V) and charged to 4.4 V of the cell indicate the possible influence of phase transition on the charge-transfer kinetics. The variation of D Li derived from GITT and EIS as a function of cell voltage and D Li (EIS) with the cycle number and the kinetic parameters obtained from the impedance plots were correlated with the electrochemical performance.

[1]  Doron Aurbach,et al.  On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes , 2000 .

[2]  N. Dudney,et al.  Lithium Diffusion in LixCoO2 (0.45 < x < 0.7) Intercalation Cathodes , 2001 .

[3]  D. D. MacNeil,et al.  Structure and Electrochemistry of Li [ Ni x Co1 − 2x Mn x ] O 2 ( 0 ⩽ x ⩽ 1 / 2 ) , 2002 .

[4]  J. Dahn,et al.  O2 Structure Li2 / 3 [ Ni 1 / 3 Mn 2 / 3 ] O 2: A New Layered Cathode Material for Rechargeable Lithium Batteries. I. Electrochemical Properties , 2000 .

[5]  P. Bruce,et al.  The Layered Intercalation Compounds Li(Mn1−yCoy)O2: Positive Electrode Materials for Lithium–Ion Batteries , 1999 .

[6]  G. Rao,et al.  EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x=0 and 1/3) , 2003 .

[7]  D. Aurbach,et al.  Determination of the Li ion chemical diffusion coefficient for the topotactic solid-state reactions occurring via a two-phase or single-phase solid solution pathway , 1999 .

[8]  Robert A. Huggins,et al.  Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films , 1980 .

[9]  B. V. R. Chowdari,et al.  Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries , 2002 .

[10]  Doron Aurbach,et al.  Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1 − x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS , 1999 .

[11]  D. Aurbach,et al.  Frumkin intercalation isotherm — a tool for the description of lithium insertion into host materials: a review , 1999 .

[12]  B. Popov,et al.  Electrochemical investigation of CrO2.65 doped LiMn2O4 as a cathode material for lithium-ion batteries , 1998 .

[13]  Doron Aurbach,et al.  The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li x MO y Host Materials (M = Ni, Mn) , 2000 .

[14]  M. Ishikawa,et al.  The a.c. impedance response of the LiNiO2 electrode in organic electrolyte solutions with different compositions , 1999 .

[15]  G. Rao,et al.  Spinel phases, LiM1/6Mn11/6O4 (M=Co, CoAl, CoCr, CrAl), as cathodes for lithium-ion batteries , 2002 .

[16]  Glenn G. Amatucci,et al.  Optimization of Insertion Compounds Such as LiMn2 O 4 for Li-Ion Batteries , 2002 .

[17]  R. Gitzendanner,et al.  The intercalation compound Li(Mn0.9Co0.1)O2 as a positive electrode for rechargeable lithium batteries , 1998 .

[18]  S. Pyun,et al.  The ac impedance study of electrochemical lithium intercalation into porous vanadium oxide electrode , 1996 .

[19]  Matsuhiko Nishizawa,et al.  Kinetic Characterization of Single Particles of LiCoO2 by AC Impedance and Potential Step Methods , 2001 .

[20]  G. Rao,et al.  Layered manganese oxide with O2 structure, Li(2/3)+x(Ni1/3Mn2/3)O2 as cathode for Li-ion batteries , 2002 .

[21]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[22]  B. Scrosati,et al.  An electrochemical ac impedance study of LixNi0.75Co0.25O2 intercalation electrode , 2001 .

[23]  Jaephil Cho,et al.  Electrochemical Stability of Thin-Film LiCoO2 Cathodes by Aluminum-Oxide Coating , 2003 .

[24]  G. Rao,et al.  Li ion kinetic studies on spinel cathodes, Li(M1/6Mn11/6)O4(M = Mn, Co, CoAl) by GITT and EIS , 2003 .

[25]  K. Amine,et al.  Synthesis and electrochemical properties of Li[Li(1−2x)/3NixMn(2−x)/3]O2 as cathode materials for lithium secondary batteries , 2002 .

[26]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[27]  J. Dahn,et al.  Layered Li‐Mn‐Oxide with the O2 Structure: A Cathode Material for Li‐Ion Cells Which Does Not Convert to Spinel , 1999 .

[28]  J. Selman,et al.  Relationship Between Calorimetric and Structural Characteristics of Lithium‐Ion Cells II. Determination of Li Transport Properties , 2000 .

[29]  D. Aurbach,et al.  Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides , 1998 .

[30]  Jean-Marie Tarascon,et al.  Impedance study of the Li°/electrolyte interface upon cycling , 2000 .

[31]  S. Emura,et al.  Structural Change of Li1−xNi0.5Mn0.5O2 Cathode Materials for Lithium-ion Batteries by Synchrotron Radiation , 2003 .

[32]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[33]  Tsutomu Ohzuku,et al.  Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries , 2003 .

[34]  Young-Min Choi,et al.  Effects of intercalation-induced stress on lithium transport through porous LiCoO2 electrode , 1997 .

[35]  Tsutomu Ohzuku,et al.  Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries , 2001 .

[36]  Christopher S. Johnson,et al.  The role of Li2MO2 structures (M=metal ion) in the electrochemistry of (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 electrodes for lithium-ion batteries , 2002 .

[37]  G. Rao,et al.  Lithiated O2 phase, Li(2/3)+x(Co0.15Mn0.85)O2 as cathode for Li-ion batteries , 2002 .

[38]  B. V. R. Chowdari,et al.  X-ray photoelectron spectroscopy and electrochemical behaviour of 4 V cathode, Li(Ni1/2Mn1/2)O2 , 2003 .