Semantic Security: Privacy Definitions Revisited

In this paper we illustrate a privacy framework named Indistinguishabley Privacy. Indistinguishable privacy could be deemed as the formalization of the existing privacy definitions in privacy preserving data publishing as well as secure multi-party computation. We introduce three representative privacy notions in the literature, Bayes-optimal privacy for privacy preserving data publishing, differential privacy for statistical data release, and privacy w.r.t. semi-honest behavior in the secure multi-party computation setting, and prove they are equivalent. To the best of our knowledge, this is the first work that illustrates the relationships of these privacy definitions and unifies them through one framework.

[1]  Ninghui Li,et al.  Provably Private Data Anonymization: Or, k-Anonymity Meets Differential Privacy , 2011, ArXiv.

[2]  Joshua Zhexue Huang,et al.  Privacy preserving distributed DBSCAN clustering , 2012, EDBT-ICDT '12.

[3]  ASHWIN MACHANAVAJJHALA,et al.  L-diversity: privacy beyond k-anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[4]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[5]  Cynthia Dwork,et al.  Differential Privacy: A Survey of Results , 2008, TAMC.

[6]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[7]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[8]  Sofya Raskhodnikova,et al.  Smooth sensitivity and sampling in private data analysis , 2007, STOC '07.

[9]  Dan Suciu,et al.  Relationship privacy: output perturbation for queries with joins , 2009, PODS.

[10]  Oded Goldreich,et al.  The Foundations of Cryptography - Volume 2: Basic Applications , 2001 .

[11]  Cynthia Dwork,et al.  Practical privacy: the SuLQ framework , 2005, PODS.

[12]  Johannes Gehrke,et al.  Towards Privacy for Social Networks: A Zero-Knowledge Based Definition of Privacy , 2011, TCC.

[13]  Toniann Pitassi,et al.  The Limits of Two-Party Differential Privacy , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[14]  Andrew McGregor,et al.  Optimizing linear counting queries under differential privacy , 2009, PODS.

[15]  Raymond Chi-Wing Wong,et al.  Anonymization by Local Recoding in Data with Attribute Hierarchical Taxonomies , 2008, IEEE Transactions on Knowledge and Data Engineering.

[16]  Benjamin C. M. Fung,et al.  Anonymizing data with quasi-sensitive attribute values , 2010, CIKM.

[17]  Ninghui Li,et al.  t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[18]  Oded Goldreich,et al.  Foundations of Cryptography: Volume 2, Basic Applications , 2004 .

[19]  Amit Sahai,et al.  Secure Multi-Party Computation , 2013 .

[20]  Elisa Bertino,et al.  Private record matching using differential privacy , 2010, EDBT '10.

[21]  Latanya Sweeney,et al.  Achieving k-Anonymity Privacy Protection Using Generalization and Suppression , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[22]  Kunal Talwar,et al.  Mechanism Design via Differential Privacy , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[23]  Raymond Chi-Wing Wong,et al.  (α, k)-anonymous data publishing , 2009, Journal of Intelligent Information Systems.

[24]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[25]  Chris Clifton,et al.  Privacy-preserving k-means clustering over vertically partitioned data , 2003, KDD '03.

[26]  Johannes Gehrke,et al.  Crowd-Blending Privacy , 2012, IACR Cryptol. ePrint Arch..

[27]  Philip S. Yu,et al.  Privacy-preserving data publishing: A survey of recent developments , 2010, CSUR.

[28]  Marianne Winslett,et al.  Differentially private data cubes: optimizing noise sources and consistency , 2011, SIGMOD '11.

[29]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[30]  Hua Wang,et al.  Cloning for privacy protection in multiple independent data publications , 2011, CIKM '11.

[31]  Rebecca N. Wright,et al.  Privacy-preserving distributed k-means clustering over arbitrarily partitioned data , 2005, KDD '05.

[32]  Jian Pei,et al.  Publishing anonymous survey rating data , 2011, Data Mining and Knowledge Discovery.

[33]  Ashwin Machanavajjhala,et al.  A rigorous and customizable framework for privacy , 2012, PODS.

[34]  Bing-Rong Lin,et al.  An Axiomatic View of Statistical Privacy and Utility , 2012, J. Priv. Confidentiality.

[35]  Ming-Syan Chen,et al.  Privacy-preserving outsourcing support vector machines with random transformation , 2010, KDD.

[36]  Jun Luo,et al.  A privacy framework: indistinguishable privacy , 2013, EDBT '13.

[37]  Benjamin C. M. Fung,et al.  Publishing set-valued data via differential privacy , 2011, Proc. VLDB Endow..

[38]  Ashwin Machanavajjhala,et al.  No free lunch in data privacy , 2011, SIGMOD '11.

[39]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.