Low-loss polymers for terahertz applications.

We have performed high-precision terahertz time-domain spectroscopy measurements on polymers (cross-linked polystyrene, TPX, Zeonor) from 0.2 to 4.2 THz. They show very interesting terahertz and visible transparency. We also investigated the terahertz characteristics of PDMS, a polymer extensively used in microfluidics, which showed absorption compatible with terahertz experiments. The thermoplastic properties of these polymers make them suitable for use as lens, window, waveguide, or support materials in such applications as biological imaging or microfluidics necessitating a constant visual control not provided by conventional silicon- or teflon-based devices.

[1]  J. R. Birch,et al.  The far-infrared optical constants of polypropylene, PTFE and polystyrene , 1992 .

[2]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[3]  D. Grischkowsky,et al.  MEASUREMENTS OF THE THZ ABSORPTION AND DISPERSION OF ZNTE AND THEIR RELEVANCE TO THE ELECTRO-OPTIC DETECTION OF THZ RADIATION , 1999 .

[4]  E. V. Loewenstein,et al.  Optical constants of far infrared materials. 3: plastics. , 1975, Applied optics.

[5]  A. Azad,et al.  Far-infrared characteristics of ZnS nanoparticles measured by terahertz time-domain spectroscopy. , 2006, The journal of physical chemistry. B.

[6]  Willie J Padilla,et al.  Dynamical electric and magnetic metamaterial response at terahertz frequencies , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[7]  Rajind Mendis,et al.  Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides. , 2006, Optics letters.

[8]  Xiang Zhang,et al.  Electro-optic transceivers for terahertz-wave applications , 2001 .

[9]  M. Koch,et al.  Properties of Building and Plastic Materials in the THz Range , 2007 .

[10]  Paul C. M. Planken,et al.  Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip , 2002 .

[11]  D. Grischkowsky,et al.  Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon , 2004 .

[12]  R. E. Miles,et al.  Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties , 2007 .

[13]  J. Coutaz,et al.  A reliable method for extraction of material parameters in terahertz time-domain spectroscopy , 1996 .

[14]  J. M. Chamberlain,et al.  An introduction to medical imaging with coherent terahertz frequency radiation. , 2002, Physics in medicine and biology.

[15]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[16]  Jiro Kitagawa,et al.  THz spectroscopic characterization of biomolecule/water systems by compact sensor chips , 2006 .

[17]  Ajay Nahata,et al.  Electro-optic detection of femtosecond electromagnetic pulses by use of poled polymers. , 2002, Optics letters.

[18]  Robert E. Miles,et al.  Terahertz Time-Domain Spectroscopy for Material Characterization , 2007, Proceedings of the IEEE.

[19]  H. A. Willis,et al.  Far infrared and millimetre-wave absorption spectra of some low-loss polymers , 1971 .

[20]  Sia Nemat-Nasser,et al.  Terahertz plasmonic composites. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  W. R. Tribe,et al.  Terahertz pulsed imaging with 1.06 μm laser excitation , 2003 .

[22]  H. Li Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation , 2022 .