Microwave, Spark Plasma and Conventional Sintering to Obtain Controlled Thermal Expansion β‐Eucryptite Materials

Lithium aluminosilicate was fabricated by conventional and nonconventional sintering: microwave and spark plasma sintering, from 1200 to 1300°C. A considerable difference in densification, microstructure, coefficient of thermal expansion behavior and hardness and Young's modulus was observed. Microwave technology made possible to obtain fully dense glass-free lithium aluminosilicate bulk material (>99%) with near-zero and controlled coefficient of thermal expansion and relatively high mechanical properties (7.1 GPa of hardness and 110 GPa of Young's modulus) compared with the other two processes. It is believed that the heating mode and effective particle packing by microwave sintering are responsible to improve these properties.

[1]  R. Torrecillas,et al.  Alumina Region of the Lithium Aluminosilicate System: A New Window for Temperature Ultrastable Materials Design , 2013 .

[2]  Dieter Krause,et al.  Low thermal expansion glass ceramics , 1995 .

[3]  T. Nishimura,et al.  Fabrication of silicon nitride nano-ceramics by spark plasma sintering , 1995 .

[4]  Yucheng Wang,et al.  Study of temperature field in spark plasma sintering , 2002 .

[5]  R. Roy,et al.  Microwave sintering of transparent alumina , 2002 .

[6]  F. Ali,et al.  Lithia porcelains as promising breeder candidates — II. Structural changes induced by fast neutron irradiation , 1997 .

[7]  Youwei Du,et al.  Preparation and characterization of highly oriented NiO(200) films by a pulse ultrasonic spray pyrolysis method , 2002 .

[8]  I. Reimanis,et al.  Effect of Doping on the Thermal Expansion of β-Eucryptite Prepared by Sol–Gel Methods , 2012 .

[9]  K. Niihara,et al.  Rapid Rate Sintering of Nano-grained ZrO2-based Composites Using Pulse Electric Current Sintering Method , 1998 .

[10]  W. Marsden I and J , 2012 .

[11]  G. Sheu,et al.  Synthesis of negative thermal expansion TiO2-doped LAS substrates , 2005 .

[12]  R. Chaim Superfast densification of nanocrystalline oxide powders by spark plasma sintering , 2006 .

[13]  H. A. McKinstry,et al.  Very Low Thermal Expansion Coefficient Materials , 1989 .

[14]  R. Raghavendra,et al.  Microwave Sintering of Multilayer Integrated Passive Devices , 2010 .

[15]  Edgar Dutra Zanotto,et al.  New Sintered Li2O–Al2O3–SiO2 Ultra‐Low Expansion Glass‐Ceramic , 2013 .

[16]  J. Ferreira,et al.  Ionic Substitutions in Biphasic Hydroxyapatite and β‐Tricalcium Phosphate Mixtures: Structural Analysis by Rietveld Refinement , 2007 .

[17]  E. Olevsky,et al.  Microwave Sintering: Fundamentals and Modeling , 2013 .

[18]  R. L. Coble,et al.  Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models , 1961 .

[19]  Joseph T. Muth,et al.  Microstrain temperature evolution in β-eucryptite ceramics: Measurement and model , 2012 .

[20]  S. Khainakov,et al.  Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures , 2010 .

[21]  R. Chaim Densification mechanisms in spark plasma sintering of nanocrystalline ceramics , 2007 .

[22]  Edgar Dutra Zanotto,et al.  New Sintered Li 2 O – Al 2 O 3 – SiO 2 Ultra-Low Expansion Glass-Ceramic , 2013 .

[23]  A. Borrell,et al.  Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering , 2014 .

[24]  Zuhair A. Munir,et al.  Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process , 2011 .

[25]  K. Shoji,et al.  Low‐Temperature Sintering of High‐Strength β‐Eucryptite Ceramics with Low Thermal Expansion Using Li2O–GeO2 as a Sintering Additive , 2011 .

[26]  A. Borrell,et al.  Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties , 2013 .

[27]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Jyh-Chen Chen,et al.  Synthesis of negative-thermal-expansion ZrW2O8 substrates , 2003 .

[30]  Z. A. Munir,et al.  Fast low-temperature consolidation of bulk nanometric ceramic materials , 2006 .

[31]  Ming Li,et al.  Growth behavior, morphology and properties of lithium aluminosilicate glass ceramics with different amount of CaO, MgO and TiO2 additive , 2008 .

[32]  W. Abdel-Fattah,et al.  Lithia porcelains as promising breeder candidates — I. Preparation and characterization of β-eucryptite and β-spodumene porcelain , 1997 .

[33]  R. Raj,et al.  A Huge Effect of Weak dc Electrical Fields on Grain Growth in Zirconia , 2009 .

[34]  A. Borrell,et al.  Improvement of microstructural properties of 3Y-TZP materials by conventional and non-conventional sintering techniques , 2012 .

[35]  H. Reveron,et al.  Grain size dependence of pure β-eucryptite thermal expansion coefficient , 2012 .