Bias reduction for high quantiles

High quantile estimation is of importance in risk management. For a heavy-tailed distribution, estimating a high quantile is done via estimating the tail index. Reducing the bias in a tail index estimator can be achieved by using either the same order or a larger order of number of the upper order statistics in comparison with the theoretical optimal one in the classical tail index estimator. For the second approach, one can either estimate all parameters simultaneously or estimate the first and second order parameters separately. Recently, the first method and the second method via external estimators for the second order parameter have been applied to reduce the bias in high quantile estimation. Theoretically, the second method obviously gives rise to a smaller order of asymptotic mean squared error than the first one. In this paper we study the second method with simultaneous estimation of all parameters for reducing bias in high quantile estimation.

[1]  Jan Beirlant,et al.  Estimating catastrophic quantile levels for heavy-tailed distributions , 2004 .

[2]  M. Ivette Gomes,et al.  Reduced-Bias Tail Index Estimators Under a Third-Order Framework , 2009 .

[3]  Frederico Caeiro,et al.  A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator , 2009 .

[4]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[5]  Fernanda Figueiredo,et al.  Improved reduced-bias tail index and quantile estimators , 2008 .

[6]  M. J. Martins,et al.  “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .

[7]  M. Ivette Gomes,et al.  A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .

[8]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[9]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[10]  M. Gomes,et al.  Bias reduction and explicit semi-parametric estimation of the tail index , 2004 .

[11]  Fernanda Figueiredo,et al.  Bias reduction in risk modelling: Semi-parametric quantile estimation , 2006 .

[12]  Liang Peng,et al.  Estimating the First‐ and Second‐Order Parameters of a Heavy‐Tailed Distribution , 2004 .

[13]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[14]  Jan Beirlant,et al.  On Exponential Representations of Log-Spacings of Extreme Order Statistics , 2002 .

[15]  S. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .

[16]  Laurens de Haan,et al.  On the estimation of high quantiles , 1993 .

[17]  L. Haan,et al.  On optimising the estimation of high quantiles of a probability distribution , 2003 .

[18]  Frederico Caeiro,et al.  Bias reduction of a tail index estimator through an external estimation of the second-order parameter , 2004 .

[19]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .