Bias reduction for high quantiles
暂无分享,去创建一个
[1] Jan Beirlant,et al. Estimating catastrophic quantile levels for heavy-tailed distributions , 2004 .
[2] M. Ivette Gomes,et al. Reduced-Bias Tail Index Estimators Under a Third-Order Framework , 2009 .
[3] Frederico Caeiro,et al. A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator , 2009 .
[4] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[5] Fernanda Figueiredo,et al. Improved reduced-bias tail index and quantile estimators , 2008 .
[6] M. J. Martins,et al. “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .
[7] M. Ivette Gomes,et al. A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .
[8] I. Weissman. Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .
[9] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[10] M. Gomes,et al. Bias reduction and explicit semi-parametric estimation of the tail index , 2004 .
[11] Fernanda Figueiredo,et al. Bias reduction in risk modelling: Semi-parametric quantile estimation , 2006 .
[12] Liang Peng,et al. Estimating the First‐ and Second‐Order Parameters of a Heavy‐Tailed Distribution , 2004 .
[13] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[14] Jan Beirlant,et al. On Exponential Representations of Log-Spacings of Extreme Order Statistics , 2002 .
[15] S. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .
[16] Laurens de Haan,et al. On the estimation of high quantiles , 1993 .
[17] L. Haan,et al. On optimising the estimation of high quantiles of a probability distribution , 2003 .
[18] Frederico Caeiro,et al. Bias reduction of a tail index estimator through an external estimation of the second-order parameter , 2004 .
[19] P. Hall,et al. Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .