The regular viewpoint on PA-processes

PA is the process algebra allowing non-determinism, sequential and parallel compositions, and recursion. We suggest viewing PA-processes astrees, and usingtree-automata techniques for verification problems on PA. Our main result is that the set of iterated predecessors of a regular set of PA-processes is a regular tree language, and similarly for iterated successors. Furthermore, the corresponding tree automata can be built effectively in polynomial time. This has many immediate applications to verification problems for PA-processes, among which a simple and general model-checking algorithm.

[1]  Søren Christensen Decidability and decomposition in process algebras , 1993 .

[2]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[3]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[4]  Antonín Kucera,et al.  Deciding bisimulation-like equivalences with finite-state processes , 2001, Theor. Comput. Sci..

[5]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[6]  Jean-Claude Raoult Rational tree relations , 1997 .

[7]  Javier Esparza Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes , 1997, Fundam. Informaticae.

[8]  Jan A. Bergstra,et al.  Decidability of Bisimulation Equivalence for Processes Generating Context-Free Languages , 1987, PARLE.

[9]  Richard Mayr Model Checking PA-Processes , 1997, CONCUR.

[10]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[11]  Javier Esparza,et al.  More infinite results , 2001, INFINITY.

[12]  Philippe Schnoebelen,et al.  A model for recursive-parallel programs , 1996, INFINITY.

[13]  Mark Jerrum,et al.  Bisimulation Equivanlence Is Decidable for Normed Process Algebra , 1999 .

[14]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.

[15]  Andreas Podelski,et al.  Efficient algorithms for pre* and post* on interprocedural parallel flow graphs , 2000, POPL '00.

[16]  J. Esparza More Innnite Results , 1996 .

[17]  Javier Esparza Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes , 1995, FCT.

[18]  Didier Caucal,et al.  On the Regular Structure of Prefix Rewriting , 1990, Theor. Comput. Sci..

[19]  Richard Mayr,et al.  Deciding Bisimulation-Like Equivalences with Finite-State Processes , 1998, ICALP.

[20]  Antonín Kucera,et al.  How to Parallelize Sequential Processes , 1997, CONCUR.

[21]  J. Richard Büchi Regular canonical systems , 1964 .

[22]  Antonín Kucera,et al.  Regularity is Decidable for Normed PA Processes in Polynomial Time , 1996, FSTTCS.

[23]  Philippe Schnoebelen,et al.  Decidable First-Order Transition Logics for PA-Processes , 2000, ICALP.

[24]  Richard Mayr Tableau Methods for PA-Processes , 1997, TABLEAUX.

[25]  Philippe Schnoebelen,et al.  A Formal Framework for the Analysis of Recursive-Parallel Programs , 1997, PaCT.

[26]  Faron Moller,et al.  Decidable Subsets of CCS , 1994, Comput. J..

[27]  Richard Mayr Combining Petri Nets and PA-Processes , 1997, TACS.

[28]  Pierre Wolper,et al.  A direct symbolic approach to model checking pushdown systems , 1997, INFINITY.

[29]  Sophie Tison,et al.  The theory of ground rewrite systems is decidable , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[30]  Faron Moller,et al.  Infinite Results , 1996, CONCUR.

[31]  J. R. Büchi Regular Canonical Systems , 1964 .

[32]  Ahmed Bouajjani,et al.  Verifying infinite state processes with sequential and parallel composition , 1995, POPL '95.

[33]  Javier Esparza,et al.  Reachability Analysis of Pushdown Automata: Application to Model-Checking , 1997, CONCUR.

[34]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[35]  Jens Knoop,et al.  An Automata-Theoretic Approach to Interprocedural Data-Flow Analysis , 1999, FoSSaCS.

[36]  Aline Deruyver,et al.  The Reachability Problem for Ground TRS and Some Extensions , 1989, TAPSOFT, Vol.1.