On finite element method-flux corrected transport stabilization for advection-diffusion problems in a partial differential-algebraic framework

An extension of the finite element method-flux corrected transport stabilization for hyperbolic problems in the context of partial differential-algebraic equations is proposed. Given a local extremum diminishing property of the spatial discretization, the positivity preservation of the one-step @q-scheme when applied to the time integration of the resulting differential-algebraic equation is shown, under a mild restriction on the time step size. As a crucial tool in the analysis, the Drazin inverse and the corresponding Drazin ordinary differential equation are explicitly derived. Numerical results are presented for non-constant and time-dependent boundary conditions in one space dimension and for a two-dimensional advection problem with a sinusoidal inflow boundary condition and the advection proceeding skew to the mesh.

[1]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[2]  Christian Großmann,et al.  Numerische Behandlung partieller Differentialgleichungen , 2005 .

[3]  Bernd Simeon,et al.  Fluid-Structure Interaction: Acceleration of Strong Coupling by Preconditioning of the Fixed-Point Iteration , 2013 .

[4]  Gunar Matthies,et al.  Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. , 2008 .

[5]  Volker John,et al.  A comparison of spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. - Part I , 2005 .

[6]  L. Tobiska,et al.  STABILISATION OF LOCAL PROJECTION TYPE APPLIED TO CONVECTION-DIFFUSION PROBLEMS WITH MIXED BOUNDARY CONDITIONS , 2007 .

[7]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[8]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[9]  J. H. Wilkinson Note on the practical significance of the Drazin inverse , 1979 .

[10]  Stefan Turek,et al.  High-resolution FEM?FCT schemes for multidimensional conservation laws , 2004 .

[11]  P. Rentrop,et al.  The Drazin inverse in multibody system dynamics , 1993 .

[12]  Sashikumaar Ganesan,et al.  Stabilization by Local Projection for Convection–Diffusion and Incompressible Flow Problems , 2010, J. Sci. Comput..

[13]  Dmitri Kuzmin,et al.  Explicit and implicit FEM-FCT algorithms with flux linearization , 2009, J. Comput. Phys..

[14]  Volker Mehrmann,et al.  Numerical integration of positive linear differential-algebraic systems , 2013, Numerische Mathematik.

[15]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[16]  C. Bolley,et al.  Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques , 1978 .

[17]  M. Drazin Pseudo-Inverses in Associative Rings and Semigroups , 1958 .

[18]  Linda R. Petzold,et al.  A stabilized explicit Lagrange multiplier based domain decomposition method for parabolic problems , 2008, J. Comput. Phys..

[19]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[20]  D. Kuzmin,et al.  Algebraic Flux Correction II , 2012 .

[21]  Volker John,et al.  Finite element methods for time-dependent convection – diffusion – reaction equations with small diffusion , 2008 .

[22]  James Hardy Wilkinson,et al.  Linear Differential Equations and Kronecker's Canonical Form , 1978 .

[23]  Wolfgang A. Wall,et al.  Coupling strategies for biomedical fluid–structure interaction problems , 2010 .

[24]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[25]  D. Kuzmin,et al.  A semi-implicit FEM-FCT algorithm for efficient treatment of time-dependent problems , 2005 .

[26]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[27]  Luca Heltai,et al.  The deal.II Library, Version 8.1 , 2013, ArXiv.

[28]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[29]  Stefan Turek,et al.  Flux correction tools for finite elements , 2002 .

[30]  Dmitri Kuzmin,et al.  Algebraic Flux Correction I. Scalar Conservation Laws , 2005 .

[31]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[32]  K. Bathe,et al.  Finite element developments for general fluid flows with structural interactions , 2004 .

[33]  P. Rentrop,et al.  Differential-Algebraic Equations , 2006 .

[34]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[35]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[36]  Volker John,et al.  On Finite Element Methods for 3D Time-Dependent Convection-Diffusion-Reaction Equations with Small Diffusion , 2008 .

[37]  T. Kerh,et al.  Transient Fluid-Structure Interaction in a Control Valve , 1997 .

[38]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part II – Analysis for P1 and Q1 finite elements , 2008 .

[39]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .