Pluripotent human stem cell lines: what we can learn about cancer initiation.

Although the cancer stem cell (CSC) hypothesis has become an attractive model to account for tumor recurrence, failure to define a cell of origin has created the need to explore alternative models for cancer initiation and maintenance. Recent studies have linked an embryonic stem cell (ESC)-like gene signature with poorly defined high-grade tumors. Here, we review advances in the ESC field with an emphasis on how human pluripotent stem cells (hPSCs) can be used to define early tumorigenic events, including potential miRNA and epigenetic targets, as well as proto-oncogene and tumor suppressor networks that might facilitate hierarchal transformation. These studies allow for investigation of cancer initiation in a manner that cannot be achieved using primary tumors, where only retrospective evaluation of CSC development is possible. By comparing transformed hPSCs with their normal counterparts, we hope to develop novel cell-specific therapies that selectively target CSCs.

[1]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[2]  Stephan Sauer,et al.  Chromatin signatures of pluripotent cell lines , 2006, Nature Cell Biology.

[3]  A. Aguzzi,et al.  Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice , 1997, Oncogene.

[4]  S. Baylin,et al.  Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? , 2006, Nature Reviews Cancer.

[5]  J. Thomson,et al.  Derivation of human embryonic stem cells in defined conditions , 2006, Nature Biotechnology.

[6]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[7]  T. Golub,et al.  Impaired microRNA processing enhances cellular transformation and tumorigenesis , 2007, Nature Genetics.

[8]  T. Ichisaka,et al.  Generation of germline-competent induced pluripotent stem cells , 2007, Nature.

[9]  Anwar Hossain,et al.  Mir-17-5p Regulates Breast Cancer Cell Proliferation by Inhibiting Translation of AIB1 mRNA , 2006, Molecular and Cellular Biology.

[10]  A. Regev,et al.  An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors , 2008, Nature Genetics.

[11]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[12]  J. Dick,et al.  A human colon cancer cell capable of initiating tumour growth in immunodeficient mice , 2007, Nature.

[13]  Aleksandar Dakic,et al.  Tumor Growth Need Not Be Driven by Rare Cancer Stem Cells , 2007, Science.

[14]  L. Chin,et al.  Nuclear cloning of embryonal carcinoma cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Steven L. Stice,et al.  Preserving the genetic integrity of human embryonic stem cells , 2005, Nature Biotechnology.

[16]  B. Mintz,et al.  Recurrent germ-line transmission of the teratocarcinoma genome from the METT-1 culture line to progeny in vivo. , 1982, The Journal of experimental zoology.

[17]  K. Illmensee,et al.  Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[18]  P. Andrews,et al.  Adaptation to culture of human embryonic stem cells and oncogenesis in vivo , 2007, Nature Biotechnology.

[19]  J. Zeitlinger,et al.  Polycomb complexes repress developmental regulators in murine embryonic stem cells , 2006, Nature.

[20]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[21]  J. Thomson,et al.  Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells , 2004, Nature Biotechnology.

[22]  Megan F. Cole,et al.  Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells , 2006, Cell.

[23]  Carlo M. Croce,et al.  MicroRNAs 17-5p–20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation , 2007, Nature Cell Biology.

[24]  D. Solter,et al.  From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research , 2006, Nature Reviews Genetics.

[25]  G. B. Pierce,et al.  MULTIPOTENTIALITY OF SINGLE EMBRYONAL CARCINOMA CELLS. , 1964, Cancer research.

[26]  Rudolf Jaenisch,et al.  Reprogramming of a melanoma genome by nuclear transplantation. , 2004, Genes & development.

[27]  M. Todaro,et al.  Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. , 2007, Cell stem cell.

[28]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[29]  A. Chakravarti,et al.  Genomic alterations in cultured human embryonic stem cells , 2005, Nature Genetics.

[30]  I. Bayazitov,et al.  A perivascular niche for brain tumor stem cells. , 2007, Cancer cell.

[31]  G. Maira,et al.  Extensive modulation of a set of microRNAs in primary glioblastoma. , 2005, Biochemical and biophysical research communications.

[32]  J. Utikal,et al.  Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. , 2007, Cell stem cell.

[33]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[34]  M. Evans,et al.  Fate of teratocarcinoma cells injected into early mouse embryos , 1975, Nature.

[35]  R. Motzer,et al.  Testicular germ-cell cancer. , 1997, The New England journal of medicine.

[36]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Ernst Wolvetang,et al.  CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells , 2006, Nature Biotechnology.

[38]  Rudolf Jaenisch,et al.  Nuclear reprogramming and pluripotency , 2006, Nature.

[39]  Takashi Aoi,et al.  Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells , 2008, Science.

[40]  T. Jacks,et al.  Identification of Bronchioalveolar Stem Cells in Normal Lung and Lung Cancer , 2005, Cell.

[41]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[42]  L. Goff,et al.  MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. , 2007, Stem cells and development.

[43]  Takumi Miura,et al.  Long‐term culture of human embryonic stem cells in feeder‐free conditions , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[44]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[45]  T. Jacks,et al.  Restoration of p53 function leads to tumour regression in vivo , 2007, Nature.

[46]  B. Thiers Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2008 .

[47]  R. Brinster THE EFFECT OF CELLS TRANSFERRED INTO THE MOUSE BLASTOCYST ON SUBSEQUENT DEVELOPMENT , 1974, The Journal of experimental medicine.

[48]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[49]  Tsung-Cheng Chang,et al.  Widespread microRNA repression by Myc contributes to tumorigenesis , 2008, Nature Genetics.

[50]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[51]  K. Illmensee,et al.  Normal genetically mosaic mice produced from malignant teratocarcinoma cells. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[52]  I. Weinstein Addiction to Oncogenes--the Achilles Heal of Cancer , 2002, Science.

[53]  C. Croce,et al.  MicroRNAs and chromosomal abnormalities in cancer cells , 2006, Oncogene.

[54]  B. Mintz,et al.  Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[55]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[56]  G. Martin,et al.  Teratocarcinomas as a model system for the study of embryogenesis and neoplasia , 1975, Cell.

[57]  T. Enver,et al.  Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. , 2005, Human molecular genetics.

[58]  J. Rossant,et al.  The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection. , 1982, Journal of embryology and experimental morphology.

[59]  S. Morrison,et al.  Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells , 2006, Nature.

[60]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[62]  Marius Wernig,et al.  c-Myc is dispensable for direct reprogramming of mouse fibroblasts. , 2008, Cell stem cell.

[63]  Reuven Agami,et al.  A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. , 2006, Cell.

[64]  M. Evans,et al.  Participation of cultured teratocarcinoma cells in mouse embryogenesis. , 1978, Journal of embryology and experimental morphology.

[65]  D. Gutmann,et al.  Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. , 2001, Cancer research.

[66]  Max S Wicha,et al.  Cancer stem cells: an old idea--a paradigm shift. , 2006, Cancer research.

[67]  Gunilla Caisander,et al.  Chromosomal integrity maintained in five human embryonic stem cell lines after prolonged in vitro culture , 2006, Chromosome Research.

[68]  G. Fuller,et al.  Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. , 2002, Cancer research.

[69]  Chad A. Cowan,et al.  Derivation of embryonic stem-cell lines from human blastocysts. , 2004, The New England journal of medicine.

[70]  E. Blennow,et al.  In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells , 2006, Journal of cellular biochemistry.

[71]  E. Blennow,et al.  Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. , 2004, Molecular human reproduction.

[72]  Amar Gajjar,et al.  Radial glia cells are candidate stem cells of ependymoma. , 2005, Cancer cell.

[73]  J. Dick,et al.  Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity , 2004, Nature Immunology.

[74]  Takashi Aoi,et al.  Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts , 2008, Nature Biotechnology.

[75]  Danila Coradini,et al.  Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. , 2005, Cancer research.

[76]  Peter A. Jones,et al.  Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. , 2006, Cancer cell.

[77]  W. Freed,et al.  Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. , 2004, Stem cells and development.

[78]  D. Gutmann,et al.  Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. , 2003, Cancer research.

[79]  Eric C. Holland,et al.  Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice , 2000, Nature Genetics.

[80]  R. Plasterk,et al.  The diverse functions of microRNAs in animal development and disease. , 2006, Developmental cell.

[81]  S. Moon,et al.  Human embryonic stem cells express a unique set of microRNAs. , 2004, Developmental biology.

[82]  S. Morrison,et al.  Prospective identification of tumorigenic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Thomson,et al.  Preimplantation Human Embryos and Embryonic Stem Cells Show Comparable Expression of Stage‐Specific Embryonic Antigens , 2002, Stem cells.

[84]  K. Kosik,et al.  Specific MicroRNAs Modulate Embryonic Stem Cell–Derived Neurogenesis , 2006, Stem cells.

[85]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[86]  R. Jaenisch,et al.  Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease , 2008, Proceedings of the National Academy of Sciences.

[87]  Marius Wernig,et al.  Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells , 2007, Nature Biotechnology.

[88]  M. Hendrix,et al.  Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells , 2008, Proceedings of the National Academy of Sciences.

[89]  L. Ricci-Vitiani,et al.  Identification and expansion of human colon-cancer-initiating cells , 2007, Nature.

[90]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[91]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[92]  M. Beal,et al.  Functional engraftment of human ES cell–derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes , 2006, Nature Medicine.

[93]  D. Louis,et al.  PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. , 2001, Genes & development.

[94]  G. Galbraith,et al.  In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state , 2008 .