Oxygen defect-ridden molybdenum oxide-coated carbon catalysts for Li-O2 battery cathodes

[1]  Wei Chen,et al.  The Marriage of the FeN4 Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters , 2018, Advanced materials.

[2]  Q. Yan,et al.  Performance-improved Li-O2 batteries by tailoring the phases of MoxC porous nanorods as an efficient cathode. , 2018, Nanoscale.

[3]  L. Mai,et al.  MoB/g-C3 N4 Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. , 2018, Angewandte Chemie.

[4]  Xiaowei Li,et al.  Biomass lysine-derived nitrogen-doped carbon hollow cubes via a NaCl crystal template: an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. , 2017, Nanoscale.

[5]  Xin-bo Zhang,et al.  Cathode Surface‐Induced, Solvation‐Mediated, Micrometer‐Sized Li2O2 Cycling for Li–O2 Batteries , 2016, Advanced materials.

[6]  Dan Xu,et al.  Flexible lithium–oxygen battery based on a recoverable cathode , 2015, Nature Communications.

[7]  Linda F Nazar,et al.  Nanostructured Metal Carbides for Aprotic Li-O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability. , 2015, The journal of physical chemistry letters.

[8]  Linda F. Nazar,et al.  A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries , 2015 .

[9]  H. Fei,et al.  Edge‐Oriented MoS2 Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices , 2014, Advanced materials.

[10]  Xiao Zhang,et al.  Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes. , 2014, Angewandte Chemie.

[11]  B. McCloskey,et al.  Nonaqueous Li-air batteries: a status report. , 2014, Chemical reviews.

[12]  Dan Xu,et al.  Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. , 2014, Chemical Society reviews.

[13]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[14]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[15]  Tao Zhang,et al.  Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. , 2013, Nano letters.

[16]  Jun Lu,et al.  A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries , 2013, Nature Communications.

[17]  Stefan A Freunberger,et al.  The carbon electrode in nonaqueous Li-O2 cells. , 2013, Journal of the American Chemical Society.

[18]  Xin-bo Zhang,et al.  Graphene Oxide Gel‐Derived, Free‐Standing, Hierarchically Porous Carbon for High‐Capacity and High‐Rate Rechargeable Li‐O2 Batteries , 2012 .

[19]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[20]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[21]  Jun Chen,et al.  Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. , 2012, Chemical Society reviews.

[22]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[23]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[24]  G. E. Matthews,et al.  Comparison of the Projector Augmented-Wave, Pseudopotential, and Linearized Augmented- Plane-Wave Formalisms for Density-Functional Calculations of Solids , 1997 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[27]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[28]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.