Numerical computation of the cut locus via a variational approximation of the distance function

We propose a new method for the numerical computation of the cut locus of a compact submanifold of R3 without boundary. This method is based on a convex variational problem with conic constraints, with proven convergence. We illustrate the versatility of our approach by the approximation of Voronoi cells on embedded surfaces of R3.

[1]  Jin-ichi Itoh,et al.  Thaw: A Tool for Approximating Cut Loci on a Triangulation of a Surface , 2004, Exp. Math..

[2]  Edouard Oudet,et al.  Cut Locus on Compact Manifolds and Uniform Semiconcavity Estimates for a Variational Inequality , 2020, Archive for Rational Mechanics and Analysis.

[3]  Tamal K. Dey,et al.  Cut locus and topology from surface point data , 2009, SCG '09.

[4]  Bernard Bonnard,et al.  Geometric and numerical techniques to compute conjugate and cut loci on Riemannian surfaces , 2014 .

[5]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[6]  Michael A. Buchner,et al.  Simplicial structure of the real analytic cut locus , 1977 .

[7]  S. Myers,et al.  Connections between differential geometry and topology II. Closed surfaces , 1936 .

[8]  P. Albano On the stability of the cut locus , 2016 .

[9]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[10]  F. Chazal,et al.  The λ-medial axis , 2005 .

[11]  Yong-Jin Liu Semi-Continuity of Skeletons in Two-Manifold and Discrete Voronoi Approximation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Minoru Tanaka,et al.  Loki: Software for Computing Cut Loci , 2002, Exp. Math..

[13]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[14]  Jakob Andreas Bærentzen,et al.  Cut Locus Construction Using Deformable Simplicial Complexes , 2011, 2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering.

[15]  A. Mennucci,et al.  Hamilton—Jacobi Equations and Distance Functions on Riemannian Manifolds , 2002, math/0201296.

[16]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..