Tyrosinase based biosensor for the electrochemical determination of sulfamethoxazole

Abstract A disposable amperometric biosensor has been developed for the determination of sulfamethoxazole (SMX). Tyrosinase (TYR) has been cross-linked to screen-printed carbon electrodes previously modified by gold nanoparticles. The oxidation current recorded at +500 mV vs Ag/AgCl SPE has been related to SMX concentration. The biosensor showed an acceptable inter and intra immobilization assay, with a RSD of 5.8% ( n  = 4) and 6.7% ( n  = 4), respectively, in the concentration range from 20 μM to 0.2 mM. The capability of detection was 22.6 ± 2.1 μM for a probability of false positive and negative of 0.05. Finally, the developed biosensors have been successfully applied to the determination of SMX in different water samples.

[1]  R. Rocha‐Filho,et al.  A novel multicommutation stopped-flow system for the simultaneous determination of sulfamethoxazole and trimethoprim by differential pulse voltammetry on a boron-doped diamond electrode , 2010 .

[2]  Sonia Centi,et al.  Development of an Electrochemical Immunoassay Based on the Use of an Eight‐Electrodes Screen‐Printed Array Coupled with Magnetic Beads for the Detection of Antimicrobial Sulfonamides in Honey , 2010 .

[3]  S. Sanllorente,et al.  Optimization of the experimental parameters in the determination of rifamycin SV by adsorptive stripping voltammetry , 2000 .

[4]  A. Heitor,et al.  Sulphonamide-imprinted sol–gel materials as ionophores in potentiometric transduction , 2011 .

[5]  A. M. García-Campaña,et al.  Determination of sulfonamide residues in water samples by in-line solid-phase extraction-capillary electrophoresis. , 2009, Journal of chromatography. A.

[6]  M. C. Ortiz,et al.  DETARCHI: A program for detection limits with specified assurance probabilities and characteristic curves of detection , 1994 .

[7]  M. Sales,et al.  New and low cost plastic membrane electrode with low detection limits for sulfadimethoxine determination in aquaculture waters , 2013 .

[8]  R. Hoff,et al.  Use of capillary electrophoresis with laser-induced fluorescence detection to screen and liquid chromatography-tandem mass spectrometry to confirm sulfonamide residues: validation according to European Union 2002/657/EC. , 2009, Journal of chromatography. A.

[9]  I. Kennedy,et al.  Analysis of sulphonamide residues in edible animal products: A review , 2006, Food additives and contaminants.

[10]  Jia-Qian Jiang,et al.  Simultaneous Detection of Sulfamethoxazole, Diclofenac, Carbamazepine, and Bezafibrate by Solid Phase Extraction and High Performance Liquid Chromatography with Diode Array Detection , 2014 .

[11]  M. Crestoni,et al.  Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection. , 1998, Journal of chromatography. B, Biomedical sciences and applications.

[12]  C. Pessôa,et al.  SIMULTANEOUS DETERMINATION OF SULFAMETHOXAZOLE AND TRIMETHOPRIM IN PHARMACEUTICAL FORMULATIONS BY SQUARE WAVE VOLTAMMETRY , 2014 .

[13]  L. Angnes,et al.  Fast simultaneous determination of trimethoprim and sulfamethoxazole by capillary zone electrophoresis with capacitively coupled contactless conductivity detection. , 2013, Journal of separation science.

[14]  V. Goulas,et al.  A rapid HPLC method for the determination of sulphonamides and trimethoprim in feed premixes , 2014 .

[15]  K. Girish Kumar,et al.  Voltammetric determination of sulfamethoxazole at a multiwalled carbon nanotube modified glassy carbon sensor and its application studies. , 2009, Drug testing and analysis.

[16]  T. Msagati,et al.  Voltammetric detection of sulfonamides at a poly(3-methylthiophene) electrode. , 2002, Talanta.

[17]  W. Kirch,et al.  Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS. , 2014, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[18]  C. Martinez-Cisneros,et al.  Novel LTCC-potentiometric microfluidic device for biparametric analysis of organic compounds carrying plastic antibodies as ionophores: application to sulfamethoxazole and trimethoprim. , 2011, Biosensors & bioelectronics.

[19]  P. Riyazuddin,et al.  Indirect potentiometric titration of sulphamethoxazole in the presence of trimethoprim in co-trimazole tablets using copper based mercury film electrode. , 2001, Chemical & pharmaceutical bulletin.

[20]  Roger Phan-Tan-Luu,et al.  Pharmaceutical Experimental Design , 1998 .

[21]  Tian Xiu-hui,et al.  Determination of Effective Ingredients in Compound Sulfamethoxazole Tablets by Capillary Electrophoresis with Amperometric Detection , 2008 .

[22]  V. Matamoros,et al.  Determination of pharmaceutical compounds in sewage sludge using a standard addition method approach , 2014 .

[23]  M. Arvand,et al.  Sulfamethoxazole-Imprinted Polymeric Receptor as Ionophore for Potentiometric Transduction , 2011 .

[24]  Yaping Ding,et al.  Determination of sulfamethoxazole in foods based on CeO2/chitosan nanocomposite-modified electrodes , 2012 .

[25]  M. García-Moreno,et al.  Catalysis and inactivation of tyrosinase in its action on o-diphenols, o-aminophenols and o-phenylendiamines: Potential use in industrial applications , 2013 .

[26]  P. Su,et al.  Applications of a Novel Sample Preparation Method for the Determination of Sulfonamides in Edible Meat by CZE , 2009 .

[27]  R. Ansari,et al.  Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode , 2011 .

[28]  Marcos R. V. Lanza,et al.  Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim , 2013 .

[29]  E. Wang,et al.  Determination of sulfadiazine and sulfamethoxazole by capillary electrophoresis with end-column electrochemical detection. , 1998, The Analyst.

[30]  G. Broun [20] Chemically aggregated enzymes , 1976 .

[31]  Iolanda Cruz Vieira,et al.  Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode , 2008 .

[32]  J. Munoz-Munoz,et al.  Catalytic oxidation of o-aminophenols and aromatic amines by mushroom tyrosinase. , 2011, Biochimica et biophysica acta.

[33]  Liliana A. A. N. A. Truta,et al.  Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: application to sulfamethoxazole. , 2012, Biosensors & bioelectronics.

[34]  George E. P. Box,et al.  Estadística para investigadores: introducción al diseño de experimentos, análisis de datos y construcción de modelos , 1988 .

[35]  A. Heitor,et al.  Solid contact PVC membrane electrodes based on neutral or charged carriers for the selective reading of anionic sulfamethoxazole and their application to the analysis of aquaculture water , 2012 .

[36]  Susana Campuzano,et al.  Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. , 2013, Biosensors & bioelectronics.

[37]  R. Rocha‐Filho,et al.  Simultaneous Differential Pulse Voltammetric Determination of Sulfamethoxazole and Trimethoprim on a Boron-Doped Diamond Electrode , 2009 .

[38]  M. Marina,et al.  Recent advances in the analysis of antibiotics by CE and CEC , 2012, Electrophoresis.

[39]  J. Inczedy,et al.  Compendium of Analytical Nomenclature , 1998 .

[40]  C. Brett,et al.  Bioelectroanalysis of pharmaceutical compounds , 2012 .

[41]  M. A. Alonso-Lomillo,et al.  CYP450 2B4 covalently attached to carbon and gold screen printed electrodes by diazonium salt and thiols monolayers. , 2009, Analytica chimica acta.

[42]  Yinfa Ma,et al.  Determination of pharmaceutical and personal care products in wastewater by capillary electrophoresis with UV detection. , 2011, Talanta.

[43]  Hanwen Sun,et al.  Development of Capillary Electrophoretic Method Combined with Accelerated Solvent Extraction for Simultaneous Determination of Residual Sulfonamides and Their Acetylated Metabolites in Aquatic Products , 2013, Food Analytical Methods.

[44]  T. Pizzolato,et al.  Simultaneous determination of eight antibiotics from distinct classes in surface and wastewater samples by solid-phase extraction and high-performance liquid chromatography–electrospray ionisation mass spectrometry , 2014 .

[45]  Y. Itoh,et al.  Simultaneous determination of sulfamethoxazole and trimethoprim in human plasma by capillary zone electrophoresis. , 2004, Biomedical chromatography : BMC.

[46]  K. Kümmerer,et al.  Simultaneous Determination of 11 Sulfonamides by HPLC–UV and Application for Fast Screening of Their Aerobic Elimination and Biodegradation in a Simple Test , 2013 .

[47]  Annick M. Leroy,et al.  Robust Regression and Outlier Detection. , 1989 .

[48]  Yongsheng Yan,et al.  Simultaneous extraction and determination of sulfadiazine and sulfamethoxazole in water samples and aquaculture products using [Bmim]BF4/(NH4)3C6H5O7 aqueous two-phase system coupled with HPLC , 2013, Journal of the Iranian Chemical Society.

[49]  A. Salis,et al.  Structure-activity relationships of various amino-hydroxy-benzenesulfonic acids and sulfonamides as tyrosinase substrates. , 2011, Biochimica et biophysica acta.

[50]  P. Rousseeuw,et al.  Least median of squares: a robust method for outlier and model error detection in regression and calibration , 1986 .

[51]  K. Girish Kumar,et al.  Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20- tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. , 2010, Drug testing and analysis.

[52]  A. Heitor,et al.  Sulfadiazine-selective determination in aquaculture environment: selective potentiometric transduction by neutral or charged ionophores. , 2011, Talanta.

[53]  Kun Liu,et al.  Hollow-fiber liquid-phase microextraction combined with capillary electrophoresis for trace analysis of sulfonamide compounds. , 2013, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.