Presenting Functors by Operations and Equations

We take the point of view that, if transition systems are coalgebras for a functor T, then an adequate logic for these transition systems should arise from the ‘Stone dual' L of T. We show that such a functor always gives rise to an ‘abstract' adequate logic for T-coalgebras and investigate under which circumstances it gives rise to a ‘concrete' such logic, that is, a logic with an inductively defined syntax and proof system. We obtain a result that allows us to prove adequateness of logics uniformly for a large number of different types of transition systems and give some examples of its usefulness.

[1]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[2]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[3]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[4]  Vincent Danos,et al.  Reversible Communicating Systems , 2004, CONCUR.

[5]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[6]  Martin Rößiger,et al.  Coalgebras and Modal Logic , 2000, CMCS.

[7]  Bart Jacobs,et al.  Duality Beyond Sober Spaces: Topological Spaces and Observation Frames , 1995, Theor. Comput. Sci..

[8]  J. Michael Dunn,et al.  Positive modal logic , 1995, Stud Logica.

[9]  Alexander Kurz,et al.  Ultrafilter Extensions for Coalgebras , 2005, CALCO.

[10]  Edmund Robinson,et al.  Power-domains, modalities and the Vietoris monad , 1986 .

[11]  Glynn Winskel,et al.  A Note on Powerdomains and Modalitiy , 1983, FCT.

[12]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[13]  Martin Rö,et al.  From modal logic to terminal coalgebras , 2001, Theor. Comput. Sci..

[14]  Corina Cîrstea,et al.  Modular Construction of Modal Logics , 2004, CONCUR.

[15]  S. Vickers Topology via Logic , 1989 .

[16]  B. Eckmann,et al.  Seminar on triples and categorical homology theory : ETH, 1966-67 , 1969 .

[17]  Jan Reiterman Algebraic theories and varieties of functor algebras , 1983 .

[18]  Glynn Winskel,et al.  On Powerdomains and Modality , 1985, Theor. Comput. Sci..

[19]  Marcello M. Bonsangue,et al.  Toward an Infinitary Logic of Domains: Abramsky Logic for Transition Systems , 1999, Inf. Comput..

[20]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[21]  Dirk Pattinson,et al.  Coalgebraic modal logic: soundness, completeness and decidability of local consequence , 2003, Theor. Comput. Sci..

[22]  Bart Jacobs,et al.  Many-Sorted Coalgebraic Modal Logic: a Model-theoretic Study , 2001, RAIRO Theor. Informatics Appl..

[23]  Yde Venema,et al.  Stone Coalgebras , 2004, CMCS.

[24]  F. E. J. Linton,et al.  An outline of functorial semantics , 1969 .

[25]  Alexander Kurz,et al.  Algebraic Semantics for Coalgebraic Logics , 2004, CMCS.

[26]  Marcello M. Bonsangue,et al.  Duality for Logics of Transition Systems , 2005, FoSSaCS.

[27]  Lawrence S. Moss,et al.  Harsanyi Type Spaces and Final Coalgebras Constructed from Satisfied Theories , 2004, CMCS.

[28]  Lutz Schröder,et al.  Expressivity of coalgebraic modal logic: The limits and beyond , 2008, Theor. Comput. Sci..

[29]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[30]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[31]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[32]  M. Kracht Tools and Techniques in Modal Logic , 1999 .

[33]  M. Bonsangue,et al.  Coalgebraic representations of distributive lattices with operators , 2007 .

[34]  Alexander Kurz,et al.  Specifying Coalgebras with Modal Logic , 1998, CMCS.