Explicit peakon and solitary wave solutions for the modified Fornberg-Whitham equation

In this paper, the modified Fornberg–Whitham equation is studied by using the bifurcation theory and the method of phase portraits analysis. In some parametric conditions, some peakons and solitary waves are found and their exact parametric representations in explicit form are obtained.

[1]  A. Wazwaz Solitary wave solutions for modified forms of Degasperis Procesi and Camassa Holm equations , 2006 .

[2]  V. Gerdjikov,et al.  Inverse scattering transform for the Camassa–Holm equation , 2006, Inverse Problems.

[3]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[4]  Zheng-rong Liu,et al.  A note on solitary waves for modified forms of Camassa–Holm and Degasperis–Procesi equations , 2007 .

[5]  Lixin Tian,et al.  A type of bounded traveling wave solutions for the Fornberg-Whitham equation , 2008, 0907.5326.

[6]  R. Johnson,et al.  On solutions of the Camassa-Holm equation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  Lixin Tian,et al.  Solitons, peakons and periodic cusp wave solutions for the Fornberg-Whitham equation , 2010 .

[8]  W. Strauss,et al.  Stability of peakons , 2000 .

[9]  Aiyong Chen,et al.  Single peak solitary wave solutions for the osmosis K(2,2) equation under inhomogeneous boundary condition , 2010 .

[10]  A. Constantin,et al.  Global Weak Solutions for a Shallow Water Equation , 2000 .

[11]  Weiguo Rui,et al.  Application of the integral bifurcation method for solving modified Camassa–Holm and Degasperis–Procesi equations , 2009 .

[12]  Zheng-rong Liu,et al.  Homotopy perturbation method for modified Camassa–Holm and Degasperis–Procesi equations , 2008 .

[13]  Yao Long,et al.  New exact bounded travelling wave solutions for the Zhiber–Shabat equation , 2009 .

[14]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[15]  Darryl D. Holm,et al.  Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves , 2003 .

[16]  Zhaoyang Yin,et al.  Global Existence and Blow-Up Phenomena for the Degasperis-Procesi Equation , 2006 .

[17]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[18]  Joachim Escher,et al.  Particle trajectories in solitary water waves , 2007 .

[19]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  Abdul-Majid Wazwaz,et al.  New solitary wave solutions to the modified forms of Degasperis-Procesi and Camassa-Holm equations , 2007, Appl. Math. Comput..

[21]  Zonghang Yang New Exact Solutions for Two Nonlinear Equations , 2006 .

[22]  Jibin Li,et al.  Smooth and non-smooth traveling waves in a nonlinearly dispersive equation , 2000 .

[23]  Wentao Huang,et al.  Travelling wave solutions of the Fornberg-Whitham equation , 2009, Appl. Math. Comput..

[24]  Li Jibin,et al.  Bifurcations of travelling wave solutions for a variant of Camassa-Holm equation , 2008 .