Ecient Hessian Calculations using Automatic Dierentiation and the Adjoint Method

In this paper an efficient general algorithm to calculate the Hessian of a steady or unsteady functional of interest in the context of computational fluid dynamics is outlined, validated and applied to an aerodynamic optimization and to an extrapolation example. The successful extrapolation is then applied to approximate Monte Carlo simulations for artificial geometric uncertainty analysis. The presented optimization examples demonstrate that the combination of automatic differentiation and an adjoint method to calculate the Hessian of a steady or unsteady objective function, and thereby obtaining second order information, can be an efficient tool for optimization and uncertainty quantification.

[1]  D. Ghate,et al.  Inexpensive Monte Carlo Uncertainty Analysis , 2005 .

[2]  David W. Zingg,et al.  A General Framework for the Optimal Control of Unsteady Flows with Applications , 2007 .

[3]  Joseph H. Morrison,et al.  Uncertainty in Computational Aerodynamics , 2003 .

[4]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[5]  D. Kraaijpoel Seismic ray fields and ray field maps : theory and algorithms , 2003 .

[6]  Gene Hou,et al.  First- and Second-Order Aerodynamic Sensitivity Derivatives via Automatic Differentiation with Incremental Iterative Methods , 1996 .

[7]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[8]  Bruce Christianson,et al.  Automatic Hessians by reverse accumulation , 1992 .

[9]  K. Giannakoglou,et al.  Computation of the Hessian matrix in aerodynamic inverse design using continuous adjoint formulations , 2008 .

[10]  M. Rumpfkeil,et al.  The optimal control of unsteady flows with a discrete adjoint method , 2010 .

[11]  Dimitri J. Mavriplis,et al.  Unsteady Discrete Adjoint Formulation for Two-Dimensional Flow Problems with Deforming Meshes , 2008 .

[12]  D. Tortorelli,et al.  Design sensitivity analysis: Overview and review , 1994 .

[13]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[14]  M. Giles,et al.  Efficient Hessian Calculation Using Automatic Differentiation , 2007 .

[15]  Gene Hou,et al.  EFFECT OF RANDOM GEOMETRIC UNCERTAINTY ON THE COMPUTATIONAL DESIGN OF A 3-D FLEXIBLE WING , 2002 .

[16]  Arthur C. Taylor,et al.  Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives , 2001 .

[17]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .