Interpretable and explainable machine learning: A methods‐centric overview with concrete examples

[1]  C. Seifert,et al.  From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI , 2022, ACM Comput. Surv..

[2]  Péter Bayer,et al.  The Shapley Value in Machine Learning , 2022, IJCAI.

[3]  Ana Rita Nogueira,et al.  Methods and tools for causal discovery and causal inference , 2022, WIREs Data Mining Knowl. Discov..

[4]  Lev V. Utkin,et al.  SurvNAM: The machine learning survival model explanation , 2021, Neural Networks.

[5]  M. Ghassemi,et al.  The false hope of current approaches to explainable artificial intelligence in health care. , 2021, The Lancet. Digital health.

[6]  Yoshinobu Kawahara,et al.  Learning interaction rules from multi-animal trajectories via augmented behavioral models , 2021, NeurIPS.

[7]  David S. Watson,et al.  Interpretable machine learning for genomics , 2021, Human Genetics.

[8]  Ariel D. Procaccia,et al.  If You Like Shapley Then You'll Love the Core , 2021, AAAI.

[9]  Julia E. Vogt,et al.  Using Machine Learning to Predict the Diagnosis, Management and Severity of Pediatric Appendicitis , 2021, Frontiers in Pediatrics.

[10]  C. Rudin,et al.  Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges , 2021, Statistics Surveys.

[11]  Sérgio M. Jesus,et al.  How can I choose an explainer?: An Application-grounded Evaluation of Post-hoc Explanations , 2021, FAccT.

[12]  Sotiris Kotsiantis,et al.  Explainable AI: A Review of Machine Learning Interpretability Methods , 2020, Entropy.

[13]  Marco F. Huber,et al.  A Survey on the Explainability of Supervised Machine Learning , 2020, J. Artif. Intell. Res..

[14]  Pascal Sturmfels,et al.  Improving performance of deep learning models with axiomatic attribution priors and expected gradients , 2020, Nature Machine Intelligence.

[15]  Tarek R. Besold,et al.  A historical perspective of explainable Artificial Intelligence , 2020, WIREs Data Mining Knowl. Discov..

[16]  Ke Liu,et al.  Revealing the Phase Diagram of Kitaev Materials by Machine Learning: Cooperation and Competition between Spin Liquids , 2020, Physical Review Research.

[17]  Bernhard Schölkopf,et al.  Algorithmic Recourse: from Counterfactual Explanations to Interventions , 2020, FAccT.

[18]  Cuntai Guan,et al.  A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[19]  Bolei Zhou,et al.  Understanding the role of individual units in a deep neural network , 2020, Proceedings of the National Academy of Sciences.

[20]  Christina B. Azodi,et al.  Opening the Black Box: Interpretable Machine Learning for Geneticists. , 2020, Trends in genetics : TIG.

[21]  Ruocheng Guo,et al.  Causal Interpretability for Machine Learning - Problems, Methods and Evaluation , 2020, SIGKDD Explor..

[22]  Marinka Zitnik,et al.  Interpretability of machine learning‐based prediction models in healthcare , 2020, WIREs Data Mining Knowl. Discov..

[23]  C. Rudin,et al.  Concept whitening for interpretable image recognition , 2020, Nature Machine Intelligence.

[24]  Matthias Dehmer,et al.  Explainable artificial intelligence and machine learning: A reality rooted perspective , 2020, WIREs Data Mining Knowl. Discov..

[25]  Hugh Chen,et al.  From local explanations to global understanding with explainable AI for trees , 2020, Nature Machine Intelligence.

[26]  Alejandro Barredo Arrieta,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2019, Inf. Fusion.

[27]  Ankur Taly,et al.  Explainable machine learning in deployment , 2019, FAT*.

[28]  Rainer Hofmann-Wellenhof,et al.  A deep learning system for differential diagnosis of skin diseases , 2019, Nature Medicine.

[29]  Max Tegmark,et al.  AI Feynman: A physics-inspired method for symbolic regression , 2019, Science Advances.

[30]  Ribana Roscher,et al.  Explainable Machine Learning for Scientific Insights and Discoveries , 2019, IEEE Access.

[31]  Amit Sharma,et al.  Explaining machine learning classifiers through diverse counterfactual explanations , 2019, FAT*.

[32]  Seong-Whan Lee,et al.  Relative Attributing Propagation: Interpreting the Comparative Contributions of Individual Units in Deep Neural Networks , 2019, AAAI.

[33]  Xia Hu,et al.  Techniques for interpretable machine learning , 2018, Commun. ACM.

[34]  Xu Chen,et al.  Explainable Recommendation: A Survey and New Perspectives , 2018, Found. Trends Inf. Retr..

[35]  Eric P. Xing,et al.  Contextual Explanation Networks , 2017, J. Mach. Learn. Res..

[36]  Ali Movahedi,et al.  Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. , 2019, Accident; analysis and prevention.

[37]  Virginia Dignum,et al.  Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way , 2019, Artificial Intelligence: Foundations, Theory, and Algorithms.

[38]  F. Arcadu,et al.  Deep learning algorithm predicts diabetic retinopathy progression in individual patients , 2019, npj Digital Medicine.

[39]  Jaime S. Cardoso,et al.  Machine Learning Interpretability: A Survey on Methods and Metrics , 2019, Electronics.

[40]  David W. Aha,et al.  DARPA's Explainable Artificial Intelligence (XAI) Program , 2019, AI Mag..

[41]  Kristof T. Schütt,et al.  Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions , 2019, Nature Communications.

[42]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[43]  Andreas Holzinger,et al.  Kandinsky Patterns , 2019, Artif. Intell..

[44]  Georg Langs,et al.  Causability and explainability of artificial intelligence in medicine , 2019, WIREs Data Mining Knowl. Discov..

[45]  Chandan Singh,et al.  Definitions, methods, and applications in interpretable machine learning , 2019, Proceedings of the National Academy of Sciences.

[46]  Doina Bucur,et al.  Causal Discovery with Attention-Based Convolutional Neural Networks , 2019, Mach. Learn. Knowl. Extr..

[47]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[48]  E. Candès,et al.  Deep Knockoffs , 2018, Journal of the American Statistical Association.

[49]  Yannig Goude,et al.  Scalable Visualization Methods for Modern Generalized Additive Models , 2018, Journal of Computational and Graphical Statistics.

[50]  Franco Turini,et al.  A Survey of Methods for Explaining Black Box Models , 2018, ACM Comput. Surv..

[51]  Walter Karlen,et al.  Granger-Causal Attentive Mixtures of Experts: Learning Important Features with Neural Networks , 2018, AAAI.

[52]  Tim Miller,et al.  Explanation in Artificial Intelligence: Insights from the Social Sciences , 2017, Artif. Intell..

[53]  Amina Adadi,et al.  Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) , 2018, IEEE Access.

[54]  Cory Y. McLean,et al.  Sequential regulatory activity prediction across chromosomes with convolutional neural networks , 2017, bioRxiv.

[55]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[56]  Mohammad Mehdi Ebadzadeh,et al.  Statistical genetic programming for symbolic regression , 2017, Appl. Soft Comput..

[57]  Chris Russell,et al.  Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR , 2017, ArXiv.

[58]  Cynthia Rudin,et al.  Optimized Risk Scores , 2017, KDD.

[59]  Paul Voigt,et al.  The EU General Data Protection Regulation (GDPR) , 2017 .

[60]  Lucas Janson,et al.  Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection , 2016, 1610.02351.

[61]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[62]  Johannes Gehrke,et al.  Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission , 2015, KDD.

[63]  Cynthia Rudin,et al.  Supersparse linear integer models for optimized medical scoring systems , 2015, Machine Learning.

[64]  Michael E. Atwood,et al.  Changing perspectives on evaluation in HCI: past, present, and future , 2013, CHI Extended Abstracts.

[65]  Noah Simon,et al.  A Sparse-Group Lasso , 2013 .

[66]  Johannes Gehrke,et al.  Intelligible models for classification and regression , 2012, KDD.

[67]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[68]  Panagiotis G. Ipeirotis,et al.  Running Experiments on Amazon Mechanical Turk , 2010, Judgment and Decision Making.

[69]  Judea Pearl,et al.  The International Journal of Biostatistics C AUSAL I NFERENCE An Introduction to Causal Inference , 2011 .

[70]  Erwin Stinstra,et al.  Metamodeling by symbolic regression and Pareto simulated annealing , 2008 .

[71]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[72]  D. Rubin Causal Inference Using Potential Outcomes , 2005 .

[73]  J. Vincent,et al.  The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure , 1996, Intensive Care Medicine.

[74]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[75]  S. Lipovetsky,et al.  Analysis of regression in game theory approach , 2001 .

[76]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[77]  Stefan Sperlich,et al.  Generalized Additive Models , 2014 .

[78]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[79]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[80]  Uzi Segal,et al.  A sufficient condition for additively separable functions , 1994 .

[81]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[82]  W. Knaus,et al.  APACHE II: a severity of disease classification system. , 1985 .