Projection-based reduced order models for a cut finite element method in parametrized domains

This work presents a reduced order modelling technique built on a high fidelity embedded mesh finite element method. Such methods, and in particular the CutFEM method, are attractive in the generation of projection-based reduced order models thanks to their capabilities to seamlessly handle large deformations of parametrized domains. The combination of embedded methods and reduced order models allows us to obtain fast evaluation of parametrized problems, avoiding remeshing as well as the reference domain formulation, often used in the reduced order modelling for boundary fitted finite element formulations. The resulting novel methodology is presented on linear elliptic and Stokes problems, together with several test cases to assess its capability. The role of a proper extension and transport of embedded solutions to a common background is analyzed in detail.

[1]  Gianluigi Rozza,et al.  A Reduced Order Model for a Stable Embedded Boundary Parametrized Cahn–Hilliard Phase-Field System Based on Cut Finite Elements , 2020, Journal of Scientific Computing.

[2]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[3]  Benjamin Stamm,et al.  Model Order Reduction for Problems with Large Convection Effects , 2018, Computational Methods in Applied Sciences.

[4]  A. Patera,et al.  Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds , 2003 .

[5]  Alexandre Ern,et al.  Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem , 2017 .

[6]  Xiao-Hui Wu,et al.  Challenges and Technologies in Reservoir Modeling , 2009 .

[7]  Gianluigi Rozza,et al.  A reduced basis approach for PDEs on parametrized geometries based on the shifted boundary finite element method and application to a Stokes flow , 2018, Computer Methods in Applied Mechanics and Engineering.

[8]  Gianluigi Rozza,et al.  Efficient geometrical parametrization for finite‐volume‐based reduced order methods , 2019, International Journal for Numerical Methods in Engineering.

[9]  Gianluigi Rozza,et al.  Reduced basis methods for Stokes equations in domains with non-affine parameter dependence , 2009 .

[10]  Gianluigi Rozza,et al.  Reduced-order semi-implicit schemes for fluid-structure interaction problems , 2017, 1711.10829.

[11]  Bernhard Wieland,et al.  Reduced basis methods for partial differential equations with stochastic influences , 2013 .

[12]  Gianluigi Rozza,et al.  Model Reduction of Parametrized Systems , 2017 .

[13]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[14]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[15]  G. Rozza,et al.  Combined Parameter and Model Reduction of Cardiovascular Problems by Means of Active Subspaces and POD-Galerkin Methods , 2017, 1711.10884.

[16]  Alex Main,et al.  The shifted boundary method for embedded domain computations. Part II: Linear advection-diffusion and incompressible Navier-Stokes equations , 2018, J. Comput. Phys..

[17]  Gianluigi Rozza,et al.  Shape Optimization by Free-Form Deformation: Existence Results and Numerical Solution for Stokes Flows , 2014, J. Sci. Comput..

[18]  G. Welper,et al.  $h$ and $hp$-adaptive Interpolation by Transformed Snapshots for Parametric and Stochastic Hyperbolic PDEs , 2017, 1710.11481.

[19]  Gabriel Peyré,et al.  Convolutional wasserstein distances , 2015, ACM Trans. Graph..

[20]  G. Karniadakis,et al.  Stability and accuracy of periodic flow solutions obtained by a POD-penalty method , 2005 .

[21]  Tim Colonius,et al.  Immersed Boundary Lattice Green Function methods for External Aerodynamics , 2017 .

[22]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[23]  Erik Burman,et al.  Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: Monitoring artificial dissipation , 2007 .

[24]  Nirmal J. Nair,et al.  Transported snapshot model order reduction approach for parametric, steady‐state fluid flows containing parameter‐dependent shocks , 2018, International Journal for Numerical Methods in Engineering.

[25]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[26]  Gianluigi Rozza,et al.  A Reduced-Order Shifted Boundary Method for Parametrized incompressible Navier-Stokes equations , 2019, Computer Methods in Applied Mechanics and Engineering.

[27]  Gianluigi Rozza,et al.  The Effort of Increasing Reynolds Number in Projection-Based Reduced Order Methods: From Laminar to Turbulent Flows , 2018, Lecture Notes in Computational Science and Engineering.

[28]  Gianluigi Rozza,et al.  RBniCS - reduced order modelling in FEniCS , 2015 .

[29]  Nirmal J. Nair,et al.  Transported snapshot model order reduction approach for parametric, steady‐state fluid flows containing parameter‐dependent shocks , 2017, International Journal for Numerical Methods in Engineering.

[30]  Gianluigi Rozza,et al.  A reduced order variational multiscale approach for turbulent flows , 2018, Advances in Computational Mathematics.

[31]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Saddle Point Problems , 2012, SIAM J. Sci. Comput..

[32]  Alex Main,et al.  The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems , 2017, J. Comput. Phys..

[33]  Erik Burman,et al.  Stabilized explicit coupling for fluid-structure interaction using Nitsche s method , 2007 .

[34]  Traian Iliescu,et al.  A numerical investigation of velocity-pressure reduced order models for incompressible flows , 2014, J. Comput. Phys..

[35]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[36]  Gianluigi Rozza,et al.  Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations , 2020, Comput. Math. Appl..

[37]  C. Allery,et al.  Proper general decomposition (PGD) for the resolution of Navier-Stokes equations , 2011, J. Comput. Phys..

[38]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[39]  Gianluigi Rozza,et al.  Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems , 2017, Advanced Modeling and Simulation in Engineering Sciences.

[40]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[41]  Angelo Iollo,et al.  Advection modes by optimal mass transfer. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[43]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[44]  Charbel Farhat,et al.  Reduction of nonlinear embedded boundary models for problems with evolving interfaces , 2014, J. Comput. Phys..

[45]  Gianluigi Rozza,et al.  An improvement on geometrical parameterizations by transfinite maps , 2014 .

[46]  Tim Colonius,et al.  A fast lattice Green's function method for solving viscous incompressible flows on unbounded domains , 2015, J. Comput. Phys..

[47]  B. Griffith,et al.  An immersed boundary method for rigid bodies , 2014, 1505.07865.

[48]  Miguel A. Fernández,et al.  Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence , 2007, Numerische Mathematik.

[49]  T. Colonius,et al.  A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions , 2008 .

[50]  Christoph Lehrenfeld,et al.  Mass conservative reduced order modeling of a free boundary osmotic cell swelling problem , 2018, Adv. Comput. Math..

[51]  Miguel A. Fernández,et al.  An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes , 2014 .

[52]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[53]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .

[54]  Matthew F. Barone,et al.  On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far‐field boundary treatment , 2010 .

[55]  Yvon Maday,et al.  A Reduced Basis Technique for Long-Time Unsteady Turbulent Flows , 2017, 1710.03569.

[56]  G. Rozza,et al.  Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations , 2017, Computers & Fluids.

[57]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[58]  Luca Heltai,et al.  Benchmarking the immersed finite element method for fluid-structure interaction problems , 2013, Comput. Math. Appl..

[59]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[60]  Andrea Manzoni,et al.  Efficient Reduction of PDEs Defined on Domains with Variable Shape , 2017 .

[61]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[62]  Endre Süli,et al.  Optimal Error Estimates for the hp-Version Interior Penalty Discontinuous Galerkin Finite Element Method , 2005 .

[63]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[64]  Jean-Antoine Désidéri,et al.  Stability Properties of POD–Galerkin Approximations for the Compressible Navier–Stokes Equations , 2000 .

[65]  Gianluigi Rozza,et al.  Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization , 2016, J. Comput. Phys..

[66]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants , 2013, Numerische Mathematik.

[67]  Volker Mehrmann,et al.  The Shifted Proper Orthogonal Decomposition: A Mode Decomposition for Multiple Transport Phenomena , 2015, SIAM J. Sci. Comput..

[68]  J. Schöberl C++11 Implementation of Finite Elements in NGSolve , 2014 .

[69]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[70]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[71]  Janet S. Peterson,et al.  The Reduced Basis Method for Incompressible Viscous Flow Calculations , 1989 .

[72]  Florian Bernard,et al.  Reduced-order model for the BGK equation based on POD and optimal transport , 2018, J. Comput. Phys..

[73]  Robert D. Guy,et al.  Immersed Boundary Smooth Extension (IBSE): A high-order method for solving incompressible flows in arbitrary smooth domains , 2016, J. Comput. Phys..

[75]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[76]  Peter Hansbo,et al.  Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem , 2014 .

[77]  G. Rozza,et al.  A Reduced Order Approach for the Embedded Shifted Boundary FEM and a Heat Exchange System on Parametrized Geometries , 2018, IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018.

[78]  Simona Perotto,et al.  A POD‐selective inverse distance weighting method for fast parametrized shape morphing , 2017, International Journal for Numerical Methods in Engineering.

[79]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[80]  Tomas Bengtsson,et al.  Fictitious domain methods using cut elements : III . A stabilized Nitsche method for Stokes ’ problem , 2012 .

[81]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[82]  Ali H. Nayfeh,et al.  On the stability and extension of reduced-order Galerkin models in incompressible flows , 2009 .

[83]  Gianluigi Rozza,et al.  Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations , 2015 .

[84]  Ting Song,et al.  The shifted boundary method for hyperbolic systems: Embedded domain computations of linear waves and shallow water flows , 2018, J. Comput. Phys..

[85]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[86]  Tim Colonius,et al.  The immersed boundary method: A projection approach , 2007, J. Comput. Phys..

[87]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[88]  Gianluigi Rozza,et al.  POD–Galerkin monolithic reduced order models for parametrized fluid‐structure interaction problems , 2016 .

[89]  Gianluigi Rozza,et al.  Model reduction methods , 2017 .

[90]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[91]  S'ebastien Court,et al.  A fictitious domain finite element method for simulations of fluid-structure interactions: The Navier-Stokes equations coupled with a moving solid , 2015, 1502.03953.

[92]  Kevin G. Wang,et al.  Predictive Simulation of Underwater Implosion: Coupling Multi-Material Compressible Fluids With Cracking Structures , 2014 .

[93]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[94]  M. Larson,et al.  Cut finite element methods for elliptic problems on multipatch parametric surfaces , 2017, 1703.07077.