Uniqueness of Tensor Train Decomposition with Linear Dependencies
暂无分享,去创建一个
David Brie | Remy Boyer | Sebastian Miron | Yassine Zniyed | D. Brie | S. Miron | R. Boyer | Yassine Zniyed
[1] Andrzej Cichocki,et al. Tensor Networks for Latent Variable Analysis: Higher Order Canonical Polyadic Decomposition , 2018, IEEE Transactions on Neural Networks and Learning Systems.
[2] R. Harshman,et al. Modeling multi‐way data with linearly dependent loadings , 2009 .
[3] André Lima Férrer de Almeida,et al. High-Order CPD Estimation with Dimensionality Reduction Using a Tensor Train Model , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).
[4] XIJING GUO,et al. Uni-mode and Partial Uniqueness Conditions for CANDECOMP/PARAFAC of Three-Way Arrays with Linearly Dependent Loadings , 2012, SIAM J. Matrix Anal. Appl..
[5] N. Sidiropoulos,et al. On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .
[6] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[7] J. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .
[8] J. Berge,et al. On uniqueness in candecomp/parafac , 2002 .
[9] G. Giannakis,et al. A FAST LEAST SQUARES ALGORITHM FOR SEPARATING TRILINEAR MIXTURES , 2004 .
[10] D. Brie,et al. Joint analysis of flow cytometry data and fluorescence spectra as a non-negative array factorization problem , 2014 .
[11] Hongbo Zhu,et al. PARALIND-based identifiability results for parameter estimation via uniform linear array , 2012, EURASIP J. Adv. Signal Process..
[12] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[13] Andrzej Cichocki,et al. Era of Big Data Processing: A New Approach via Tensor Networks and Tensor Decompositions , 2014, ArXiv.
[14] Gérard Favier,et al. Multidimensional harmonic retrieval based on Vandermonde tensor train , 2019, Signal Process..