Association of Finite-Dimension Thermodynamics and a Bond-Graph Approach for Modeling an Irreversible Heat Engine

In recent decades, the approach known as Finite-Dimension Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature Ths) and a heat sink (at temperature Tcs). We will show in this paper that the approach detailed in a previous paper [1] can be used to analytically model irreversible heat engines (with an additional assumption on the linearity of the heat transfer laws). By defining two dimensionless parameters, the intensity of internal dissipation and heat leakage within a heat engine were quantified. We then established the analogy between an endoreversible heat engine and an irreversible heat engine by using the apparent temperatures (Tcs → T λ,φ cs , Ths → T λ,φ hs ) and apparent conductances (Kh → K λ h , Kc → K λ c ). We thus found the analytical expression of the maximum power of an irreversible heat engine. However, these apparent temperatures should not be used to calculate the conversion efficiency at the optimal operating point by analogy with the case of an endoreversible heat engine. OPEN ACCESS Entropy 2012, 14 1235

[1]  M. Feidt,et al.  Conditions optimales de fonctionnement des pompes à chaleur ou machines à froid associées à un cycle de Carnot endoréversible , 1986 .

[2]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[3]  A. Hernández,et al.  Coupled heat devices in linear irreversible thermodynamics. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  B. Andresen Current trends in finite-time thermodynamics. , 2011, Angewandte Chemie.

[5]  Fernando Angulo-Brown,et al.  An ecological optimization criterion for finite‐time heat engines , 1991 .

[6]  R. Stephen Berry,et al.  Finite-Time Thermodynamics , 2022 .

[7]  Fernando Angulo-Brown,et al.  Comparative analysis of two ecological type modes of performance for a simple energy converter , 2009 .

[8]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[9]  C. Broeck,et al.  Thermodynamic efficiency at maximum power. , 2005 .

[10]  Y Apertet,et al.  Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Chih Wu Analysis of waste-heat thermoelectric power generators , 1996 .

[12]  A. Hernández,et al.  Collective working regimes for coupled heat engines. , 2007, Physical review letters.

[13]  B. Andresen,et al.  Thermodynamics in finite time: extremals for imperfect heat engines , 1977 .

[14]  H Ouerdane,et al.  Efficiency at maximum power of thermally coupled heat engines. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  M. J. Moran,et al.  Thermal design and optimization , 1995 .

[16]  Chih Wu,et al.  Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility , 1992 .

[17]  Bahri Sahin,et al.  A comparative performance analysis of irreversible Carnot heat engines under maximum power density and maximum power conditions , 2000 .

[18]  Udo Seifert,et al.  Efficiency at maximum power: An analytically solvable model for stochastic heat engines , 2007, 0710.4097.

[19]  Bahri Sahin,et al.  Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics , 2004 .

[20]  Lingen Chen,et al.  General performance characteristics of a finite-speed Carnot refrigerator , 1996 .

[21]  Lingen Chen,et al.  Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems , 1999 .

[22]  Michel Feidt,et al.  THERMODYNAMICS OF ENERGY SYSTEMS AND PROCESSES: A REVIEW AND PERSPECTIVES , 2012 .

[23]  Michel Feidt,et al.  Association of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine , 2012, Entropy.

[24]  Fengrui Sun,et al.  Ecological optimization for generalized irreversible Carnot engines , 2004 .

[25]  Michel Feidt,et al.  Reconsideration of Criteria and Modeling in Order to Optimize the Efficiency of Irreversible Thermomechanical Heat Engines , 2010, Entropy.

[26]  B. Andresen,et al.  Thermodynamics in finite time. I. The step-Carnot cycle , 1977 .

[27]  George Papadakis,et al.  Low­grade heat conversion into power using organic Rankine cycles - A review of various applications , 2011 .

[28]  Gequn Shu,et al.  A review of researches on thermal exhaust heat recovery with Rankine cycle , 2011 .

[29]  Bjarne Andresen,et al.  Thermodynamics in finite time. II. Potentials for finite-time processes , 1977 .

[30]  Michel Feidt,et al.  Optimisation thermodynamique en temps fini du moteur de Stirling endo- et exo-irréversible , 1996 .

[31]  G. Vojta,et al.  Extended Irreversible Thermodynamics , 1998 .

[32]  A. Bejan Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes , 1996 .

[33]  O. Glavatskaya,et al.  Optimal working conditions for thermoelectric generators with realistic thermal coupling , 2011, 1108.6164.

[34]  Michel Feidt,et al.  Optimization of the direct Carnot cycle , 2007 .

[35]  Xiangchun Xuan,et al.  Optimum staging of multistage exo-reversible refrigeration systems , 2003 .

[36]  Christophe Goupil,et al.  Thermodynamics of Thermoelectric Phenomena and Applications , 2011, Entropy.

[37]  Tu Zhan-Chun Recent advance on the efficiency at maximum power of heat engines , 2012 .

[38]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[39]  Bjarne Andresen,et al.  Thermodynamics in finite time , 1984 .

[40]  Fengrui Sun,et al.  Optimal performance of an endoreversible Carnot heat pump , 1997 .

[41]  Periasamy Vijay,et al.  A bond graph model-based evaluation of a control scheme to improve the dynamic performance of a solid oxide fuel cell , 2009 .

[42]  F Angulo-Brown,et al.  First-order irreversible thermodynamic approach to a simple energy converter. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  I. I. Novikov The efficiency of atomic power stations (a review) , 1958 .

[44]  S. C. Kaushik,et al.  Thermoeconomic optimization and parametric study of an irreversible Stirling heat pump cycle , 2004 .

[45]  P. Chambadal Les centrales nucléaires , 1957 .

[46]  Michel Feidt,et al.  Optimal Thermodynamics - New Upperbounds , 2009, Entropy.

[47]  Daniel Favrat,et al.  Thermodynamique et Energétique: Volume 1, de l'énergie à l'exergie , 2005 .

[48]  Anne Dauscher,et al.  Thermoélectricité : des principes aux applications , 2016, Propriétés électriques et électrochimiques.