Quadrature Errors, Discrepancies, and Their Relations to Halftoning on the Torus and the Sphere

This paper deals with continuous-domain quantization, which aims to create the illusion of a gray-value image by appropriately distributing black dots. For lack of notation, we refer to the process as halftoning, which is usually associated with the quantization on a discrete grid. Recently a framework for this task was proposed by minimizing an attraction-repulsion functional consisting of the difference of two continuous, convex functions. The first one of these functions describes attracting forces caused by the image gray values, the second one enforces repulsion between the dots. In this paper, we generalize this approach by considering quadrature error functionals on reproducing kernel Hilbert spaces (RKHSs) with respect to the quadrature nodes, where we ask for optimal distributions of these nodes. For special reproducing kernels these quadrature error functionals coincide with discrepancy functionals, which leads to a geometric interpretation. It turns out that the original attraction-repulsion fu...

[1]  Dennis M. Healy,et al.  Towards Safe and Effective High-Order Legendre Transforms with Applications to FFTs for the 2-sphere , 2004, Adv. Comput. Math..

[2]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[3]  G. Beylkin On the Fast Fourier Transform of Functions with Singularities , 1995 .

[4]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[5]  G. Arce,et al.  Binary display of hexagonally sampled continuous-tone images , 1985 .

[6]  E. Saff,et al.  Asymptotics for minimal discrete energy on the sphere , 1995 .

[7]  A.,et al.  FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , .

[8]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[9]  Werner Purgathofer,et al.  Forced random dithering: improved threshold matrices for ordered dithering , 1994, Proceedings of 1st International Conference on Image Processing.

[10]  E. Novak,et al.  Tractability of Multivariate Problems Volume II: Standard Information for Functionals , 2010 .

[11]  John F. Jarvis,et al.  A survey of techniques for the display of continuous tone pictures on bilevel displays , 1976 .

[12]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[13]  J. Daniel Convergence of the conjugate gradient method with computationally convenient modifications , 1967 .

[14]  Victor Ostromoukhov,et al.  A simple and efficient error-diffusion algorithm , 2001, SIGGRAPH.

[15]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[16]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[17]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[18]  Joachim Weickert,et al.  Dithering by Differences of Convex Functions , 2011, SIAM J. Imaging Sci..

[19]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Electrostatic Halftoning Electrostatic Halftoning , 2022 .

[20]  Andrew Calway,et al.  Proceedings of the IEEE International Conference on Image Processing , 1996 .

[21]  Daniel Cohen-Or,et al.  Structure-aware halftoning , 2008, ACM Trans. Graph..

[22]  Jan P. Allebach,et al.  Halftoning via direct binary search using analytical and stochastic printer models , 2003, IEEE Trans. Image Process..

[23]  Ian H. Sloan,et al.  A variational characterisation of spherical designs , 2009, J. Approx. Theory.

[24]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[25]  David R. Nelson,et al.  Interacting topological defects on frozen topographies , 1999, cond-mat/9911379.

[26]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[27]  Jan P. Allebach,et al.  Model-based halftoning using direct binary search , 1992, Electronic Imaging.

[28]  Michael Balzer,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, ACM Trans. Graph..

[29]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[30]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[31]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[32]  Robert Ulichney,et al.  Dithering with blue noise , 1988, Proc. IEEE.

[33]  Victor Ostromoukhov,et al.  Polyomino-Based Digital Halftoning , 2008, ArXiv.

[34]  David J. Wales,et al.  Defect motifs for spherical topologies , 2009 .

[35]  Philip Crotwell Constructive Approximation on the Sphere , 2000 .

[36]  Joachim Weickert,et al.  Fast electrostatic halftoning , 2011, Journal of Real-Time Image Processing.

[37]  Eiichi Bannai,et al.  A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..

[38]  G. Wahba Spline models for observational data , 1990 .

[39]  Adrian Secord,et al.  Weighted Voronoi stippling , 2002, NPAR '02.

[40]  Erik Lehto,et al.  Rotational transport on a sphere: Local node refinement with radial basis functions , 2010, J. Comput. Phys..

[41]  A. Bloch Hamiltonian and Gradient Flows, Algorithms and Control , 1995 .

[42]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[43]  Victor Ostromoukhov,et al.  Structure-aware error diffusion , 2009, ACM Trans. Graph..

[44]  D. Mattis Quantum Theory of Angular Momentum , 1981 .

[45]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[46]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[47]  Jan P. Allebach,et al.  Digital halftoning , 2003 .

[48]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[49]  Steven Thomas Smith,et al.  Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.

[50]  Alexander Keller,et al.  Efficient Illumination by High Dynamic Range Images , 2003, Rendering Techniques.

[51]  Martin Hanke-Bourgeois,et al.  Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens , 2002 .

[52]  Manuel Gräf,et al.  On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms , 2011, Numerische Mathematik.

[53]  Xiaojun Chen,et al.  Computational existence proofs for spherical t-designs , 2011, Numerische Mathematik.

[54]  J. Daniel The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .

[55]  Daniel Potts,et al.  Fast evaluation of quadrature formulae on the sphere , 2008, Math. Comput..

[56]  Stefan Kunis,et al.  On the computation of nonnegative quadrature weights on the sphere , 2009 .

[57]  Ares Lagae,et al.  A Comparison of Methods for Generating Poisson Disk Distributions , 2008, Comput. Graph. Forum.

[58]  Stefan Kunis,et al.  Fast spherical Fourier algorithms , 2003 .