Selectivity and robustness of sparse coding networks

We investigate how the population nonlinearities resulting from lateral inhibition and thresholding in sparse coding networks influence neural response selectivity and robustness. We show that when compared to pointwise nonlinear models, such population nonlinearities improve the selectivity to a preferred stimulus and protect against adversarial perturbations of the input. These findings are predicted from the geometry of the single-neuron iso-response surface, which provides new insight into the relationship between selectivity and adversarial robustness. Inhibitory lateral connections curve the iso-response surface outward in the direction of selectivity. Since adversarial perturbations are orthogonal to the iso-response surface, adversarial attacks tend to be aligned with directions of selectivity. Consequently, the network is less easily fooled by perceptually irrelevant perturbations to the input. Together, these findings point to benefits of integrating computational principles found in biological vision systems into artificial neural networks.

[1]  Bruno A. Olshausen,et al.  Highly overcomplete sparse coding , 2013, Electronic Imaging.

[2]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[3]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[4]  Surya Ganguli,et al.  A deep learning framework for neuroscience , 2019, Nature Neuroscience.

[5]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[6]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[7]  David A. Wagner,et al.  Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples , 2018, ICML.

[8]  Garrett T. Kenyon,et al.  Modeling Biological Immunity to Adversarial Examples , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Michael S. Lewicki,et al.  A Simple Model of Optimal Population Coding for Sensory Systems , 2014, PLoS Comput. Biol..

[10]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[11]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  Upamanyu Madhow,et al.  Sparsity-based Defense Against Adversarial Attacks on Linear Classifiers , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[13]  Christopher J. Rozell,et al.  Visual Nonclassical Receptive Field Effects Emerge from Sparse Coding in a Dynamical System , 2013, PLoS Comput. Biol..

[14]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[15]  John J. Hopfield,et al.  Dense Associative Memory Is Robust to Adversarial Inputs , 2017, Neural Computation.

[16]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[17]  Christopher J. Rozell,et al.  Analog Sparse Approximation with Applications to Compressed Sensing , 2011, 1111.4118.

[18]  Bruno A. Olshausen,et al.  Perception as an Inference Problem , 2013 .

[19]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[20]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[21]  C. Zetzsche,et al.  Nonlinear and higher-order approaches to the encoding of natural scenes , 2005, Network.

[22]  H.-S. Philip Wong,et al.  Joint Source-Channel Coding with Neural Networks for Analog Data Compression and Storage , 2018, 2018 Data Compression Conference.

[23]  Subutai Ahmad,et al.  How Can We Be So Dense? The Benefits of Using Highly Sparse Representations , 2019, ArXiv.

[24]  Bruno A. Olshausen,et al.  Subspace Locally Competitive Algorithms , 2020, NICE.

[25]  Matthias Bethge,et al.  Natural Image Coding in V1: How Much Use Is Orientation Selectivity? , 2008, PLoS Comput. Biol..

[26]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[27]  Tim Gollisch,et al.  Disentangling Sub-Millisecond Processes within an Auditory Transduction Chain , 2005, PLoS biology.

[28]  Pingkun Yan,et al.  Sparse coding for image denoising using spike and slab prior , 2013, Neurocomputing.

[29]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[30]  Thomas G. Dietterich,et al.  Benchmarking Neural Network Robustness to Common Corruptions and Surface Variations , 2018, 1807.01697.

[31]  Tim Gollisch,et al.  Closed-Loop Measurements of Iso-Response Stimuli Reveal Dynamic Nonlinear Stimulus Integration in the Retina , 2012, Neuron.

[32]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[33]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[34]  Nic Ford,et al.  Adversarial Examples Are a Natural Consequence of Test Error in Noise , 2019, ICML.

[35]  Benjamin Recht,et al.  Do ImageNet Classifiers Generalize to ImageNet? , 2019, ICML.

[36]  Matthias Bethge,et al.  Towards the first adversarially robust neural network model on MNIST , 2018, ICLR.

[37]  Gerhard Krieger,et al.  The atoms of vision: Cartesian or polar? , 1999 .

[38]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[39]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[40]  Tom M. Mitchell,et al.  The Need for Biases in Learning Generalizations , 2007 .

[41]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[42]  Ekin D. Cubuk,et al.  Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation , 2019, ArXiv.

[43]  Kedarnath P. Vilankar,et al.  Conjectures regarding the nonlinear geometry of visual neurons , 2016, Vision Research.

[44]  Matthias Bethge,et al.  The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction , 2008, NIPS.

[45]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[46]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[47]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[48]  Geoffrey E. Hinton,et al.  DARCCC: Detecting Adversaries by Reconstruction from Class Conditional Capsules , 2018, ArXiv.

[49]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[50]  Seyed-Mohsen Moosavi-Dezfooli,et al.  The Robustness of Deep Networks: A Geometrical Perspective , 2017, IEEE Signal Processing Magazine.

[51]  Renjie Liao,et al.  Normalizing the Normalizers: Comparing and Extending Network Normalization Schemes , 2016, ICLR.

[52]  Jason Yosinski,et al.  Deep neural networks are easily fooled: High confidence predictions for unrecognizable images , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Patrick Cavanagh,et al.  Different spatial representations guide eye and hand movements. , 2017, Journal of vision.

[54]  D. G. Albrecht,et al.  Bayesian analysis of identification performance in monkey visual cortex: Nonlinear mechanisms and stimulus certainty , 1995, Vision Research.

[55]  Quoc V. Le,et al.  ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning , 2011, NIPS.

[56]  Heiko H Schütt,et al.  An image-computable psychophysical spatial vision model. , 2017, Journal of vision.

[57]  Kilian Q. Weinberger,et al.  On Calibration of Modern Neural Networks , 2017, ICML.

[58]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[59]  Seyed-Mohsen Moosavi-Dezfooli,et al.  Universal Adversarial Perturbations , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Edward Kim,et al.  Classifiers Based on Deep Sparse Coding Architectures are Robust to Deep Learning Transferable Examples , 2018, ArXiv.

[61]  Dylan M Paiton Analysis and applications of the Locally Competitive Algorithm , 2019 .

[62]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[63]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[64]  Qing Nie,et al.  Primary visual cortex shows laminar‐specific and balanced circuit organization of excitatory and inhibitory synaptic connectivity , 2016, The Journal of physiology.

[65]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[66]  Gerhard Krieger,et al.  Nonlinear mechanisms and higher-order statistics in biological vision and electronic image processing: review and perspectives , 2001, J. Electronic Imaging.

[67]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[68]  Samy Bengio,et al.  Adversarial examples in the physical world , 2016, ICLR.

[69]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[70]  Seyed-Mohsen Moosavi-Dezfooli,et al.  Robustness of classifiers: from adversarial to random noise , 2016, NIPS.

[71]  Jascha Sohl-Dickstein,et al.  Adversarial Examples that Fool both Computer Vision and Time-Limited Humans , 2018, NeurIPS.

[72]  G. Horwitz,et al.  Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing , 2012, Nature Neuroscience.

[73]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[74]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[75]  Seyed-Mohsen Moosavi-Dezfooli,et al.  Robustness via Curvature Regularization, and Vice Versa , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[76]  David A. Wagner,et al.  Towards Evaluating the Robustness of Neural Networks , 2016, 2017 IEEE Symposium on Security and Privacy (SP).

[77]  C. Zetzsche,et al.  Nonlinear and extra-classical receptive field properties and the statistics of natural scenes , 2001, Network.

[78]  Thomas L. Griffiths,et al.  Advances in Neural Information Processing Systems 21 , 1993, NIPS 2009.

[79]  R. Douglas,et al.  Recurrent neuronal circuits in the neocortex , 2007, Current Biology.

[80]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[81]  W. Brendel,et al.  Foolbox: A Python toolbox to benchmark the robustness of machine learning models , 2017 .

[82]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[83]  Sotirios Chatzis,et al.  Local Competition and Uncertainty for Adversarial Robustness in Deep Learning , 2020, ArXiv.

[84]  Philip H. S. Torr,et al.  With Friends Like These, Who Needs Adversaries? , 2018, NeurIPS.

[85]  Zenghui Wang,et al.  Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review , 2017, Neural Computation.

[86]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[87]  Milos Hauskrecht,et al.  Obtaining Well Calibrated Probabilities Using Bayesian Binning , 2015, AAAI.

[88]  Nikil Dutt,et al.  Neural correlates of sparse coding and dimensionality reduction , 2019, PLoS Comput. Biol..

[89]  Priya Shah,et al.  A Neuromorphic Sparse Coding Defense to Adversarial Images , 2019, ICONS.

[90]  Tim Gollisch,et al.  The iso-response method: measuring neuronal stimulus integration with closed-loop experiments , 2012, Front. Neural Circuits.

[91]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[92]  Richard G. Baraniuk,et al.  Sparse Coding via Thresholding and Local Competition in Neural Circuits , 2008, Neural Computation.

[93]  Nicholas J. Priebe,et al.  Mechanisms of Neuronal Computation in Mammalian Visual Cortex , 2012, Neuron.

[94]  Matthew R. Krause,et al.  Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation , 2010, Neuron.

[95]  Selmaan N. Chettih,et al.  Single-neuron perturbations reveal feature-specific competition in V1 , 2019, Nature.

[96]  Si Wu,et al.  Robustness of neural codes and its implication on natural image processing , 2007, Cognitive Neurodynamics.

[97]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[98]  Preetum Nakkiran,et al.  A Discussion of 'Adversarial Examples Are Not Bugs, They Are Features': Adversarial Examples are Just Bugs, Too , 2019, Distill.

[99]  Christoph Zetzsche,et al.  Image surface predicates and the neural encoding of two-dimensional signal variations , 1990, Other Conferences.

[100]  Md Nasir Uddin Laskar,et al.  Normalization and pooling in hierarchical models of natural images , 2019, Current Opinion in Neurobiology.

[101]  Xin Wang,et al.  How inhibitory circuits in the thalamus serve vision. , 2015, Annual review of neuroscience.

[102]  Matthias Bethge,et al.  Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models , 2017, ICLR.

[103]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[104]  Valero Laparra,et al.  End-to-end Optimized Image Compression , 2016, ICLR.

[105]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[106]  Tai Sing Lee,et al.  Recurrent Feedback Improves Feedforward Representations in Deep Neural Networks , 2019, ArXiv.

[107]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[108]  Kedarnath P Vilankar,et al.  Selectivity, hyperselectivity, and the tuning of V1 neurons. , 2017, Journal of vision.

[109]  Surya Ganguli,et al.  A Unified Theory Of Early Visual Representations From Retina To Cortex Through Anatomically Constrained Deep CNNs , 2019, bioRxiv.

[110]  Matthias Bethge,et al.  Engineering a Less Artificial Intelligence , 2019, Neuron.

[111]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[112]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.