An Embedded Optical Flow Processor for Visual Navigation using Optical Correlator Technology

The conceptual design of an embedded high performance opto-electronic optical flow processor is presented, which is designed for navigation applications in the field of robotics (ground, aerial, marine) and space (satellites, landing vehicles). It is based on 2D fragment image motion determination by 2D correlation. To meet the real-time performance requirements the principle of joint transform correlation (JTC) and advanced optical correlator technology is used. The paper recalls briefly the underlying principles of optical flow computation and optical correlation, it shows the system layout and the conceptual design for the optical flow processor and it gives preliminary performance results based on a high fidelity simulation of the complete optical processing chain

[1]  K. Janschek,et al.  Opto-Mechatronic Image Stabilization for a Compact Space Camera , 2004 .

[2]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  Klaus Janschek,et al.  Optical Flow Based Navigation for Mobile Robots Using an Embedded Optical Correlator , 2004 .

[4]  Christopher E. Neely,et al.  Mixed-mode VLSI optic flow sensors for in-flight control of a micro air vehicle , 2000, SPIE Optics + Photonics.

[5]  Rama Chellappa,et al.  Accuracy vs Efficiency Trade-offs in Optical Flow Algorithms , 1996, Comput. Vis. Image Underst..

[6]  Javier Díaz,et al.  FPGA-based real-time optical-flow system , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[7]  Klaus Janschek,et al.  Space Application of a Self-Calibrating Optical Processor for Harsh Mechanical Environment , 2000 .

[8]  Brendan McCane,et al.  Recovering Motion Fields: An Evaluation of Eight Optical Flow Algorithms , 1998, BMVC.

[9]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[10]  Suganda Jutamulia,et al.  Joint transform correlators and their applications , 1992, Other Conferences.

[11]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[12]  Klaus Janschek,et al.  An Optical Flow Approach for Precise Visual Navigation of a Planetary Lander , 2006 .

[13]  J. Goodman Introduction to Fourier optics , 1969 .

[14]  Seung-Hong Hong,et al.  Mobile Robot Localization and Mapping using Scale-Invariant Features , 2005 .

[15]  Timo Kohlberger,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Variational Optic Flow Computation in Real-time Variational Optic Flow Computation in Real-time , 2022 .

[16]  Klaus Janschek,et al.  OPTICAL FLOW NAVIGATION FOR AN OUTDOOR UAV USING A WIDE ANGLE MONO CAMERA AND DEM MATCHING , 2006 .

[17]  William K. Pratt,et al.  Correlation Techniques of Image Registration , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[18]  B. McCane,et al.  On the Evaluation of Optical Flow Algorithms , 1998 .

[19]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[20]  Jean-Christophe Zufferey,et al.  Bio-inspired vision-based flying robots , 2005 .

[21]  Timo Kohlberger,et al.  Real-Time Optic Flow Computation with Variational Methods , 2003, CAIP.

[22]  Klaus Janschek,et al.  Airborne test results for smart pushbroom imaging system with optoelectronic image correction , 2004, SPIE Remote Sensing.