Dynamical Disorder and Self-Correlation in the Characterization of Nonlinear Systems: Application to Deterministic Chaos

A new methodology to characterize nonlinear systems is described. It is based on the measurement over the time series of two quantities: the "Dynamical order" and the "Self-correlation". The averaged "Scalar" and "Perpendicular" products are introduced to measure these quantities. While this approach can be applied to general nonlinear systems, the aim of this work is to focus on the characterization and modeling of chaotic systems. In order to illustrate the method, applications to a two-dimensional chaotic system and the modeling of real telephony traffic series are presented. Three important aspects are discussed: the use of the averaged "Scalar" product as supplement of the "Lyapunov exponent", the use of the averaged "Perpendicular" product as a refinement of the "Mutual information" and the reduction of m-dimensional systems to the study of only one dimension. This new conceptual framework introduces a perspective to characterize real and theoretical processes with a unifying method, irrespective of the system classification.

[1]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[2]  P. Grassberger,et al.  14. Estimating the fractal dimensions and entropies of strange attractors , 1986 .

[3]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[4]  M. Hénon,et al.  On the numerical computation of Poincaré maps , 1982 .

[5]  Michael Small,et al.  Superfamily phenomena and motifs of networks induced from time series , 2008, Proceedings of the National Academy of Sciences.

[6]  Chenxi Shao,et al.  Extracting Qualitative States from Nonlinear Time Series Using Integration of Fuzzy c-Means and Hierarchical Clustering , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[7]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[8]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[9]  D. Guégan,et al.  Chaos in economics and finance , 2009, Annu. Rev. Control..

[10]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[11]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[12]  Ricardo López-Ruiz,et al.  Complex Patterns on the Plane: Different Types of Basin Fractalization in a Two-Dimensional Mapping , 2003, Int. J. Bifurc. Chaos.

[13]  Ricardo López-Ruiz,et al.  Dynamics of maps with a global multiplicative coupling , 1991 .

[14]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[15]  J. Deschatrette,et al.  Unmasking Chaotic Attributes in Time Series of Living Cell Populations , 2010, PloS one.

[16]  Georg A. Gottwald,et al.  On the Implementation of the 0-1 Test for Chaos , 2009, SIAM J. Appl. Dyn. Syst..

[17]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[18]  Osvaldo A. Rosso,et al.  Missing ordinal patterns in correlated noises , 2010 .

[19]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[20]  R. Badii,et al.  On the Fractal Dimension of Filtered Chaotic Signals , 1986 .

[21]  Hong-Bo Xie,et al.  Measuring time series regularity using nonlinear similarity-based sample entropy , 2008 .

[22]  P. F. Meier,et al.  Evaluation of Lyapunov exponents and scaling functions from time series , 1988 .

[23]  S. Saigal,et al.  Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[25]  Changpin Li,et al.  Estimating the Lyapunov exponents of discrete systems. , 2004, Chaos.

[26]  Ireneusz J. Jóźwiak,et al.  Deterministic chaos in the processor load , 2007 .

[27]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[28]  Ljupco Kocarev,et al.  Order patterns and chaos , 2006 .

[29]  Jing-Yi Guo,et al.  Using the modified sample entropy to detect determinism , 2010 .

[30]  M Small,et al.  Complex network from pseudoperiodic time series: topology versus dynamics. , 2006, Physical review letters.

[31]  Massimiliano Zanin,et al.  Forbidden patterns in financial time series. , 2007, Chaos.

[32]  U. Parlitz,et al.  Lyapunov exponents from time series , 1991 .

[33]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[34]  M. Small,et al.  Characterizing pseudoperiodic time series through the complex network approach , 2008 .

[35]  Theodoros E. Karakasidis,et al.  Detection of low-dimensional chaos in wind time series , 2009 .

[36]  A. K. Erlang The theory of probabilities and telephone conversations , 1909 .

[37]  José María Amigó,et al.  Forbidden patterns and shift systems , 2008, J. Comb. Theory, Ser. A.

[38]  T. Okushima New method for computing finite-time Lyapunov exponents. , 2003, Physical review letters.

[39]  O. Rössler An equation for continuous chaos , 1976 .

[40]  J. Fridrich Symmetric Ciphers Based on Two-Dimensional Chaotic Maps , 1998 .

[41]  Dierk Schleicher Hausdorff Dimension, Its Properties, and Its Surprises , 2007, Am. Math. Mon..

[42]  P. Rapp,et al.  Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.