Dynamical Disorder and Self-Correlation in the Characterization of Nonlinear Systems: Application to Deterministic Chaos
暂无分享,去创建一个
Juan Carlos Losada | Rosa M. Benito | J. C. Losada | Juan Antonio Hernández | R. M. Benito | J. A. Hernández
[1] O A Rosso,et al. Distinguishing noise from chaos. , 2007, Physical review letters.
[2] P. Grassberger,et al. 14. Estimating the fractal dimensions and entropies of strange attractors , 1986 .
[3] P. Grassberger,et al. Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .
[4] M. Hénon,et al. On the numerical computation of Poincaré maps , 1982 .
[5] Michael Small,et al. Superfamily phenomena and motifs of networks induced from time series , 2008, Proceedings of the National Academy of Sciences.
[6] Chenxi Shao,et al. Extracting Qualitative States from Nonlinear Time Series Using Integration of Fuzzy c-Means and Hierarchical Clustering , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).
[7] G. Benettin,et al. Kolmogorov Entropy and Numerical Experiments , 1976 .
[8] Eckmann,et al. Liapunov exponents from time series. , 1986, Physical review. A, General physics.
[9] D. Guégan,et al. Chaos in economics and finance , 2009, Annu. Rev. Control..
[10] Robert M. May,et al. Simple mathematical models with very complicated dynamics , 1976, Nature.
[11] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[12] Ricardo López-Ruiz,et al. Complex Patterns on the Plane: Different Types of Basin Fractalization in a Two-Dimensional Mapping , 2003, Int. J. Bifurc. Chaos.
[13] Ricardo López-Ruiz,et al. Dynamics of maps with a global multiplicative coupling , 1991 .
[14] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[15] J. Deschatrette,et al. Unmasking Chaotic Attributes in Time Series of Living Cell Populations , 2010, PloS one.
[16] Georg A. Gottwald,et al. On the Implementation of the 0-1 Test for Chaos , 2009, SIAM J. Appl. Dyn. Syst..
[17] F. Hausdorff. Dimension und äußeres Maß , 1918 .
[18] Osvaldo A. Rosso,et al. Missing ordinal patterns in correlated noises , 2010 .
[19] Sawada,et al. Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.
[20] R. Badii,et al. On the Fractal Dimension of Filtered Chaotic Signals , 1986 .
[21] Hong-Bo Xie,et al. Measuring time series regularity using nonlinear similarity-based sample entropy , 2008 .
[22] P. F. Meier,et al. Evaluation of Lyapunov exponents and scaling functions from time series , 1988 .
[23] S. Saigal,et al. Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[25] Changpin Li,et al. Estimating the Lyapunov exponents of discrete systems. , 2004, Chaos.
[26] Ireneusz J. Jóźwiak,et al. Deterministic chaos in the processor load , 2007 .
[27] Fraser,et al. Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.
[28] Ljupco Kocarev,et al. Order patterns and chaos , 2006 .
[29] Jing-Yi Guo,et al. Using the modified sample entropy to detect determinism , 2010 .
[30] M Small,et al. Complex network from pseudoperiodic time series: topology versus dynamics. , 2006, Physical review letters.
[31] Massimiliano Zanin,et al. Forbidden patterns in financial time series. , 2007, Chaos.
[32] U. Parlitz,et al. Lyapunov exponents from time series , 1991 .
[33] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[34] M. Small,et al. Characterizing pseudoperiodic time series through the complex network approach , 2008 .
[35] Theodoros E. Karakasidis,et al. Detection of low-dimensional chaos in wind time series , 2009 .
[36] A. K. Erlang. The theory of probabilities and telephone conversations , 1909 .
[37] José María Amigó,et al. Forbidden patterns and shift systems , 2008, J. Comb. Theory, Ser. A.
[38] T. Okushima. New method for computing finite-time Lyapunov exponents. , 2003, Physical review letters.
[39] O. Rössler. An equation for continuous chaos , 1976 .
[40] J. Fridrich. Symmetric Ciphers Based on Two-Dimensional Chaotic Maps , 1998 .
[41] Dierk Schleicher. Hausdorff Dimension, Its Properties, and Its Surprises , 2007, Am. Math. Mon..
[42] P. Rapp,et al. Statistical validation of mutual information calculations: comparison of alternative numerical algorithms. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.