Reactive Search Optimization: Learning While Optimizing

Reactive Search Optimization advocates the integration of sub-symbolic machine learning techniques into search heuristics for solving complex optimization problems. The word reactive hints at a ready response to events during the search through an internal online feedback loop for the self-tuning of critical parameters. Methodologies of interest for Reactive Search Optimization include machine learning and statistics, in particular reinforcement learning, active or query learning, neural networks, and meta-heuristics (although the boundary signalled by the “meta” prefix is not always clear).

[1]  Pierre Hansen,et al.  Algorithms for the maximum satisfiability problem , 1987, Computing.

[2]  T. Glenn Bailey,et al.  Reactive Tabu Search in unmanned aerial reconnaissance simulations , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[3]  Luca Maria Gambardella,et al.  MAX-2-SAT: How Good Is Tabu Search in the Worst-Case? , 2004, AAAI.

[4]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[5]  Jean-Charles Lamirel,et al.  Using Reactive Tabu Search in Semi-supervised Classification , 2007, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007).

[6]  David Connolly An improved annealing scheme for the QAP , 1990 .

[7]  Alena Shmygelska,et al.  An extremal optimization search method for the protein folding problem: the go-model example , 2007, GECCO '07.

[8]  Edward W. Felten,et al.  Large-step markov chains for the TSP incorporating local search heuristics , 1992, Oper. Res. Lett..

[9]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[10]  Hakim Mabed,et al.  Adaptive Tabu Tenure Computation in Local Search , 2008, EvoCOP.

[11]  Roberto Battiti,et al.  Learning with first, second, and no derivatives: A case study in high energy physics , 1994, Neurocomputing.

[12]  Mhand Hifi,et al.  A reactive local search-based algorithm for the disjunctively constrained knapsack problem , 2006, J. Oper. Res. Soc..

[13]  Hugues Delmaire,et al.  REACTIVE GRASP AND TABU SEARCH BASED HEURISTICS FOR THE SINGLE SOURCE CAPACITATED PLANT LOCATION PROBLEM , 1999 .

[14]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[15]  Kai Zhao,et al.  Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search , 2011, Appl. Soft Comput..

[16]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[17]  Stefan Voß,et al.  Applications of modern heuristic search methods to pattern sequencing problems , 1999, Comput. Oper. Res..

[18]  Helena Ramalhinho Dias Lourenço,et al.  Job-shop scheduling: Computational study of local search and large-step optimization methods , 1995 .

[19]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[20]  Roberto Battiti,et al.  The gregarious particle swarm optimizer (G-PSO) , 2006, GECCO '06.

[21]  Mauro Brunato,et al.  Reactive Search and Intelligent Optimization , 2008 .

[22]  Brad J. Cox,et al.  Object-oriented programming ; an evolutionary approach , 1986 .

[23]  Éric D. Taillard,et al.  Robust taboo search for the quadratic assignment problem , 1991, Parallel Comput..

[24]  Zhe Wu,et al.  Penalty Formulations and Trap-Avoidance Strategies for Solving Hard Satisfiability Problems , 2005, Journal of Computer Science and Technology.

[25]  Ibrahim H. Osman,et al.  Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem , 1993, Ann. Oper. Res..

[26]  Mauro Brunato,et al.  R-EVO: A Reactive Evolutionary Algorithm for the Maximum Clique Problem , 2011, IEEE Transactions on Evolutionary Computation.

[27]  Toby Walsh,et al.  Towards an Understanding of Hill-Climbing Procedures for SAT , 1993, AAAI.

[28]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[29]  Ulrich Faigle,et al.  Some Convergence Results for Probabilistic Tabu Search , 1992, INFORMS J. Comput..

[30]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[31]  Mauro Brunato,et al.  Optimal Wireless Access Point Placement for Location-Dependent Services , 2003 .

[32]  Sartaj Sahni,et al.  Simulated Annealing and Combinatorial Optimization , 1986, DAC 1986.

[33]  Andrew W. Moore,et al.  Learning Evaluation Functions to Improve Optimization by Local Search , 2001, J. Mach. Learn. Res..

[34]  Abdul Sattar,et al.  Adaptive Clause Weight Redistribution , 2006, CP.

[35]  N. Wassan Reactive tabu adaptive memory programming search for the vehicle routing problem with backhauls , 2007, J. Oper. Res. Soc..

[36]  Dale Schuurmans,et al.  The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming , 2001, IJCAI.

[37]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[38]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[39]  R. Battiti,et al.  A Memory-Based RASH Optimizer , 2006 .

[40]  Igor Grabec,et al.  Adaptive self-tuning neurocontrol , 2000 .

[41]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[42]  J. Wesley Barnes,et al.  Reactive Search for Flexible Job Shop Scheduling , 1998 .

[43]  Malik Magdon-Ismail,et al.  Locating Hidden Groups in Communication Networks Using Hidden Markov Models , 2003, ISI.

[44]  Olli Bräysy,et al.  A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time Windows , 2003, INFORMS J. Comput..

[45]  Alan J. Hu,et al.  Boosting Verification by Automatic Tuning of Decision Procedures , 2007 .

[46]  R. Battiti,et al.  Multilevel Reactive Tabu Search for Graph , 1999 .

[47]  William Stallings,et al.  Wireless Communications and Networks , 2001, 2020 International Conference on Smart Systems and Technologies (SST).

[48]  Barry Richards,et al.  Approaches to the Subnet Generation Problem , 2007 .

[49]  Martijn C. Schut,et al.  Reinforcement Learning for Online Control of Evolutionary Algorithms , 2006, ESOA.

[50]  Christine Solnon,et al.  A Comparative Study of Ant Colony Optimization and Reactive Search for Graph Matching Problems , 2006, EvoCOP.

[51]  Olivier C. Martin,et al.  Combining simulated annealing with local search heuristics , 1993, Ann. Oper. Res..

[52]  Roberto Battiti,et al.  Reinforcement Learning and Reactive Search: an adaptive MAX-SAT solver , 2008, ECAI.

[53]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[54]  Andrew W. Moore,et al.  Learning evaluation functions for global optimization , 1998 .

[55]  Roberto Battiti,et al.  Reactive Local Search Techniques for the Maximum k-conjunctive Constraint Satisfaction Problem (MAX-k-CCSP) , 1999, Discret. Appl. Math..

[56]  C. Voudouris,et al.  Partial Constraint Satisfaction Problems and Guided Local Search , 1996 .

[57]  Dave Elliman,et al.  Reactive prohibition-based ant colony optimization (RPACO): a new parallel architecture for constrained clique sub-graphs , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[58]  Raffaele Cerulli,et al.  Extensions of the minimum labelling spanning tree problem , 2006 .

[59]  Giovanni Manzini,et al.  Perturbation: An Efficient Technique for the Solution of Very Large Instances of the Euclidean TSP , 1996, INFORMS J. Comput..

[60]  Jeremy Frank,et al.  Weighting for Godot: Learning Heuristics for GSAT , 1996, AAAI/IAAI, Vol. 1.

[61]  Yoshikazu Fukuyama,et al.  Service Restoration in Distribution Systems Aiming Higher Utilization Rate of Feeders , 2003 .

[62]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[63]  David Abramson,et al.  Simulated Annealing Cooling Schedules for the School Timetabling Problem , 1999 .

[64]  Mhand Hifi,et al.  A Reactive Local Search-Based Algorithm for the Multiple-Choice Multi-Dimensional Knapsack Problem , 2006, Comput. Optim. Appl..

[65]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[66]  Giovanni Danese,et al.  A parallel neurochip for neural networks implementing the reactive tabu search algorithm: application case studies , 2001, Proceedings Ninth Euromicro Workshop on Parallel and Distributed Processing.

[67]  Niaz A. Wassan,et al.  A reactive tabu search meta-heuristic for the vehicle routing problem with back-hauls , 2002 .

[68]  Ju-Jang Lee,et al.  Adaptive simulated annealing genetic algorithm for system identification , 1996 .

[69]  Yoshikazu Fukuyama,et al.  Fast optimal setting for voltage control equipment considering interconnection of distributed generators , 2002, IEEE/PES Transmission and Distribution Conference and Exhibition.

[70]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[71]  Edward W. Felten,et al.  Large-Step Markov Chains for the Traveling Salesman Problem , 1991, Complex Syst..

[72]  Roberto Battiti,et al.  Training neural nets with the reactive tabu search , 1995, IEEE Trans. Neural Networks.

[73]  Mauro Brunato,et al.  Reactive Search for Traffic Grooming in WDM Networks , 2001, IWDC.

[74]  Nigel P. Topham,et al.  Performance of the decoupled ACRI-1 architecture: the perfect club , 1995, HPCN Europe.

[75]  John Baxter,et al.  Local Optima Avoidance in Depot Location , 1981 .

[76]  R. Battiti,et al.  Simulated annealing and Tabu search in the long run: A comparison on QAP tasks☆ , 1994 .

[77]  J. Wesley Barnes,et al.  Solving the Pickup and Delivery Problem with Time Windows Using Reactive Tabu Search Transportation , 2000 .

[78]  J. W. Barnes,et al.  Solving the aerial fleet refueling problem using group theoretic tabu search , 2004 .

[79]  Kazuhiro Saitou,et al.  Design Optimization of a Vehicle B-Pillar Subjected to Roof Crush Using Mixed Reactive Taboo Search , 2003, DAC 2003.

[80]  Mark A. Fleischer,et al.  Cybernetic optimization by simulated annealing: Accelerating convergence by parallel processing and probabilistic feedback control , 1996, J. Heuristics.

[81]  Mauro Brunato,et al.  RASH: A Self-adaptive Random Search Method , 2008, Adaptive and Multilevel Metaheuristics.

[82]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[83]  Roberto Battiti,et al.  TOTEM: A HIGHLY PARALLEL CHIP FOR TRIGGERING APPLICATIONS WITH INDUCTIVE LEARNING BASED ON THE REACTIVE TABU SEARCH , 1995 .

[84]  R. Battiti,et al.  Local search with memory: benchmarking RTS , 1995 .

[85]  Thomas Stützle,et al.  Reactive Stochastic Local Search Algorithms for the Genomic Median Problem , 2007, EvoCOP.

[86]  J. Crispim,et al.  Reactive tabu search and variable neighbourhood descent applied to the vehicle routing problem with , 2001 .

[87]  Roberto Battiti,et al.  Special-purpose parallel architectures for high-performance machine learning , 1995, HPCN Europe.

[88]  Jan H. M. Korst,et al.  Heuristic Approaches for the Quartet Method of Hierarchical Clustering , 2010, IEEE Transactions on Knowledge and Data Engineering.

[89]  Edward P. K. Tsang,et al.  Guided local search and its application to the traveling salesman problem , 1999, Eur. J. Oper. Res..

[90]  Y. Fukuyama Reactive tabu search for distribution load transfer operation , 2000, 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077).

[91]  Holger H. Hoos,et al.  Warped Landscapes and Random Acts of SAT Solving , 2004, AI&M.

[92]  Rex K. Kincaid,et al.  Reactive Tabu Search and Sensor Selection in Active Structural Acoustic Control Problems , 1998, J. Heuristics.

[93]  Bart Selman,et al.  An Empirical Study of Greedy Local Search for Satisfiability Testing , 1993, AAAI.

[94]  Stefan Voß,et al.  Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem , 2005 .

[95]  J. Wesley Barnes,et al.  New Tabu Search Results for the Job Shop Scheduling Problem , 1996 .

[96]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[97]  U. Hansmann Simulated annealing with Tsallis weights a numerical comparison , 1997, cond-mat/9710190.

[98]  Patrick Siarry,et al.  Tabu Search applied to global optimization , 2000, Eur. J. Oper. Res..

[99]  Jeremy Frank Learning Short-Term Weights for GSAT , 1997, IJCAI.

[100]  Balázs Kotnyek,et al.  Application of heuristic methods for conformance test selection , 2002, Eur. J. Oper. Res..

[101]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[102]  Alena Shmygelska,et al.  Novel heuristic search methods for protein folding and identification of folding pathways , 2006 .

[103]  Roberto Battiti,et al.  The continuous reactive tabu search: Blending combinatorial optimization and stochastic search for global optimization , 1996, Ann. Oper. Res..

[104]  Graham Kendall,et al.  Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , 2013 .

[105]  Kazuhiro Saitou,et al.  Design optimization of N-shaped roof trusses using reactive taboo search , 2003, Appl. Soft Comput..

[106]  Roberto Battiti,et al.  Reactive Local Search for Maximum Clique , 1997 .

[107]  Roberto Battiti,et al.  Reactive Local Search for the Maximum Clique Problem1 , 2001, Algorithmica.

[108]  Jerzy Balicki Hierarchical Tabu Programming for Finding the Underwater Vehicle Trajectory , 2007 .

[109]  L. Ingber Very fast simulated re-annealing , 1989 .

[110]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[111]  Roberto Battiti,et al.  Reactive search, a history-sensitive heuristic for MAX-SAT , 1997, JEAL.

[112]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[113]  D. Werra,et al.  Some experiments with simulated annealing for coloring graphs , 1987 .

[114]  Bruce W. Colletti,et al.  A Reactive Tabu Search algorithm with variable clustering for the Unicost Set Covering Problem , 2007 .

[115]  P. Smith,et al.  Tabu search optimization of externally pressurized barrels and domes , 2007 .

[116]  Mikkel Thorup,et al.  Increasing Internet Capacity Using Local Search , 2004, Comput. Optim. Appl..

[117]  Kee-Eung Kim,et al.  Statistical Machine Learning for Large-Scale Optimization , 2000 .

[118]  Roberto Battiti,et al.  Solving MAX-SAT with non-oblivious functions and history-based heuristics , 1996, Satisfiability Problem: Theory and Applications.

[119]  Stefan Voß,et al.  Solving the continuous flow-shop scheduling problem by metaheuristics , 2003, Eur. J. Oper. Res..

[120]  Sartaj Sahni,et al.  Experiments with Simulated Annealing , 1985, DAC 1985.

[121]  Nilgun Fescioglu-Unver Application of Self Controlling Software Approach to Reactive Tabu Search , 2008 .

[122]  Steve R. White,et al.  Concepts of scale in simulated annealing , 2008 .

[123]  Uwe T. Zimmermann,et al.  Real-time dispatch of trams in storage yards , 2000, Ann. Oper. Res..

[124]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[125]  Holger H. Hoos,et al.  An adaptive bin framework search method for a beta-sheet protein homopolymer model , 2007, BMC Bioinformatics.

[126]  Timothy L. Urban,et al.  Vehicle routing with soft time windows and Erlang travel times , 2008, J. Oper. Res. Soc..

[127]  J. T. Moore,et al.  Devising a quick-running heuristic for an unmanned aerial vehicle (UAV) routing system , 2005, J. Oper. Res. Soc..

[128]  R. Battiti,et al.  TOTEM: a digital processor for neural networks and Reactive Tabu Search , 1994, Proceedings of the Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems.

[129]  Roberto Battiti,et al.  Greedy, Prohibition, and Reactive Heuristics for Graph Partitioning , 1999, IEEE Trans. Computers.

[130]  Günther R. Raidl,et al.  Variable Neighborhood Descent with Self-Adaptive Neighborhood-Ordering , 2006 .

[131]  M. Bera,et al.  The Totem neurochip: an FPGA implementation , 2004, Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004..

[132]  Toshihide Ibaraki,et al.  A tabu search approach to the constraint satisfaction problem as a general problem solver , 1998, Eur. J. Oper. Res..

[133]  Brigitte Jaumard,et al.  A tabu search heuristic for the dimensioning of 3G multi-service networks , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[134]  Wen-Chyuan Chiang,et al.  Integrating multi-product production and distribution in newspaper logistics , 2008, Comput. Oper. Res..

[135]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[136]  Lars Magnus Hvattum,et al.  Adaptive memory search for multidemand multidimensional knapsack problems , 2006, Comput. Oper. Res..

[137]  Ehl Emile Aarts,et al.  A quantitative analysis of iterated local research , 1995 .

[138]  Y. Fukuyama,et al.  Comparative study of modern heuristic algorithms to service restoration in distribution systems , 2002, 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309).

[139]  Wen-Chyuan Chiang,et al.  A Reactive Tabu Search Metaheuristic for the Vehicle Routing Problem with Time Windows , 1997, INFORMS J. Comput..

[140]  Mauro Brunato,et al.  On Effectively Finding Maximal Quasi-cliques in Graphs , 2008, LION.