Adaptive Splitting Integrators for Enhancing Sampling Efficiency of Modified Hamiltonian Monte Carlo Methods in Molecular Simulation.
暂无分享,去创建一个
J. M. Sanz-Serna | Tijana Radivojević | Elena Akhmatskaya | Mario Fernández-Pendás | J M Sanz-Serna | Tijana Radivojević | M. Fernández-Pendás | E. Akhmatskaya | J. Sanz-Serna
[1] Jesús María Sanz-Serna,et al. Palindromic 3-stage splitting integrators, a roadmap , 2017, J. Comput. Phys..
[2] Jesús María Sanz-Serna,et al. Numerical Integrators for the Hybrid Monte Carlo Method , 2014, SIAM J. Sci. Comput..
[3] Sebastian Reich,et al. GSHMC: An efficient method for molecular simulation , 2008, J. Comput. Phys..
[4] B. Escribano,et al. Combining stochastic and deterministic approaches within high efficiency molecular simulations , 2013 .
[5] Erik Lindahl,et al. Brute-force molecular dynamics simulations of Villin headpiece: Comparison with NMR parameters , 2003 .
[6] R. Skeel,et al. Nonlinear Resonance Artifacts in Molecular Dynamics Simulations , 1998 .
[7] D. van der Spoel,et al. GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .
[8] Sebastian Reich,et al. Meso-GSHMC: A stochastic algorithm for meso-scale constant temperature simulations , 2011, ICCS.
[9] J. Carrasco,et al. Enhancing sampling in atomistic simulations of solid-state materials for batteries: a focus on olivine NaFePO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\ , 2016, Theoretical Chemistry Accounts.
[10] Alexey K. Mazur. Common Molecular Dynamics Algorithms Revisited , 1997 .
[11] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[12] Jesús María Sanz-Serna,et al. Adaptive multi-stage integrators for optimal energy conservation in molecular simulations , 2015, J. Comput. Phys..
[13] Carsten Kutzner,et al. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.
[14] Paul T. Matsudaira,et al. NMR structure of the 35-residue villin headpiece subdomain , 1997, Nature Structural Biology.
[15] Tijana Radivojević,et al. Mix & Match Hamiltonian Monte Carlo , 2017, 1706.04032.
[16] Y. Hori,et al. Development of Golden Section Search Driven Particle Swarm Optimization and its Application , 2006, 2006 SICE-ICASE International Joint Conference.
[17] Justin Solomon,et al. Exponential Integration for Hamiltonian Monte Carlo , 2015, ICML.
[18] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[19] Sebastian Reich,et al. Improved sampling for simulations of interfacial membrane proteins: application of generalized shadow hybrid Monte Carlo to a peptide toxin/bilayer system. , 2008, The journal of physical chemistry. B.
[20] Klaus Schulten,et al. Coarse grained protein-lipid model with application to lipoprotein particles. , 2006, The journal of physical chemistry. B.
[21] Nawaf Bou-Rabee,et al. A comparison of generalized hybrid Monte Carlo methods with and without momentum flip , 2009, J. Comput. Phys..
[22] A. Horowitz. A generalized guided Monte Carlo algorithm , 1991 .
[23] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[24] Sebastian Reich,et al. Multiple-time-stepping generalized hybrid Monte Carlo methods , 2015, J. Comput. Phys..
[25] J. Carrasco,et al. Enhancing sampling in atomistic simulations of solid-state materials for batteries: a focus on olivine $$\hbox {NaFePO}_4$$NaFePO4 , 2016, 1612.08243.
[26] A. Kennedy,et al. Cost of the Generalised Hybrid Monte Carlo Algorithm for Free Field Theory , 2000, hep-lat/0008020.
[27] M. Parrinello,et al. Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.
[28] P. Matsudaira,et al. Villin sequence and peptide map identify six homologous domains. , 1988, Proceedings of the National Academy of Sciences of the United States of America.
[29] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[30] Scott S. Hampton,et al. Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules , 2004 .
[31] Mark S.P. Sansom,et al. Carbon nanotube/detergent interactions via coarse-grained molecular dynamics. , 2007, Nano letters.
[32] Tijana Radivojević. Enhancing sampling in computational statistics using modified hamiltonians , 2016 .
[33] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[34] Tijana Radivojević,et al. Constant pressure hybrid Monte Carlo simulations in GROMACS , 2014, Journal of Molecular Modeling.
[35] Su Hwan Kim,et al. Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel. , 2005, Biochemistry.
[36] Sebastian Reich,et al. New Hybrid Monte Carlo Methods for Efficient Sampling : from Physics to Biology and Statistics (Selected Papers of the Joint International Conference of Supercomputing in Nuclear Applications and Monte Carlo : SNA + MC 2010) , 2011 .
[37] Scott S. Hampton,et al. A separable shadow Hamiltonian hybrid Monte Carlo method. , 2009, The Journal of chemical physics.