Adaptive Splitting Integrators for Enhancing Sampling Efficiency of Modified Hamiltonian Monte Carlo Methods in Molecular Simulation.

The modified Hamiltonian Monte Carlo (MHMC) methods, i.e., importance sampling methods that use modified Hamiltonians within a Hybrid Monte Carlo (HMC) framework, often outperform in sampling efficiency standard techniques such as molecular dynamics (MD) and HMC. The performance of MHMC may be enhanced further through the rational choice of the simulation parameters and by replacing the standard Verlet integrator with more sophisticated splitting algorithms. Unfortunately, it is not easy to identify the appropriate values of the parameters that appear in those algorithms. We propose a technique, that we call MAIA (Modified Adaptive Integration Approach), which, for a given simulation system and a given time step, automatically selects the optimal integrator within a useful family of two-stage splitting formulas. Extended MAIA (or e-MAIA) is an enhanced version of MAIA, which additionally supplies a value of the method-specific parameter that, for the problem under consideration, keeps the momentum acceptance rate at a user-desired level. The MAIA and e-MAIA algorithms have been implemented, with no computational overhead during simulations, in MultiHMC-GROMACS, a modified version of the popular software package GROMACS. Tests performed on well-known molecular models demonstrate the superiority of the suggested approaches over a range of integrators (both standard and recently developed), as well as their capacity to improve the sampling efficiency of GSHMC, a noticeable method for molecular simulation in the MHMC family. GSHMC combined with e-MAIA shows a remarkably good performance when compared to MD and HMC coupled with the appropriate adaptive integrators.

[1]  Jesús María Sanz-Serna,et al.  Palindromic 3-stage splitting integrators, a roadmap , 2017, J. Comput. Phys..

[2]  Jesús María Sanz-Serna,et al.  Numerical Integrators for the Hybrid Monte Carlo Method , 2014, SIAM J. Sci. Comput..

[3]  Sebastian Reich,et al.  GSHMC: An efficient method for molecular simulation , 2008, J. Comput. Phys..

[4]  B. Escribano,et al.  Combining stochastic and deterministic approaches within high efficiency molecular simulations , 2013 .

[5]  Erik Lindahl,et al.  Brute-force molecular dynamics simulations of Villin headpiece: Comparison with NMR parameters , 2003 .

[6]  R. Skeel,et al.  Nonlinear Resonance Artifacts in Molecular Dynamics Simulations , 1998 .

[7]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[8]  Sebastian Reich,et al.  Meso-GSHMC: A stochastic algorithm for meso-scale constant temperature simulations , 2011, ICCS.

[9]  J. Carrasco,et al.  Enhancing sampling in atomistic simulations of solid-state materials for batteries: a focus on olivine NaFePO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\ , 2016, Theoretical Chemistry Accounts.

[10]  Alexey K. Mazur Common Molecular Dynamics Algorithms Revisited , 1997 .

[11]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[12]  Jesús María Sanz-Serna,et al.  Adaptive multi-stage integrators for optimal energy conservation in molecular simulations , 2015, J. Comput. Phys..

[13]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[14]  Paul T. Matsudaira,et al.  NMR structure of the 35-residue villin headpiece subdomain , 1997, Nature Structural Biology.

[15]  Tijana Radivojević,et al.  Mix & Match Hamiltonian Monte Carlo , 2017, 1706.04032.

[16]  Y. Hori,et al.  Development of Golden Section Search Driven Particle Swarm Optimization and its Application , 2006, 2006 SICE-ICASE International Joint Conference.

[17]  Justin Solomon,et al.  Exponential Integration for Hamiltonian Monte Carlo , 2015, ICML.

[18]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[19]  Sebastian Reich,et al.  Improved sampling for simulations of interfacial membrane proteins: application of generalized shadow hybrid Monte Carlo to a peptide toxin/bilayer system. , 2008, The journal of physical chemistry. B.

[20]  Klaus Schulten,et al.  Coarse grained protein-lipid model with application to lipoprotein particles. , 2006, The journal of physical chemistry. B.

[21]  Nawaf Bou-Rabee,et al.  A comparison of generalized hybrid Monte Carlo methods with and without momentum flip , 2009, J. Comput. Phys..

[22]  A. Horowitz A generalized guided Monte Carlo algorithm , 1991 .

[23]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[24]  Sebastian Reich,et al.  Multiple-time-stepping generalized hybrid Monte Carlo methods , 2015, J. Comput. Phys..

[25]  J. Carrasco,et al.  Enhancing sampling in atomistic simulations of solid-state materials for batteries: a focus on olivine $$\hbox {NaFePO}_4$$NaFePO4 , 2016, 1612.08243.

[26]  A. Kennedy,et al.  Cost of the Generalised Hybrid Monte Carlo Algorithm for Free Field Theory , 2000, hep-lat/0008020.

[27]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[28]  P. Matsudaira,et al.  Villin sequence and peptide map identify six homologous domains. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[30]  Scott S. Hampton,et al.  Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules , 2004 .

[31]  Mark S.P. Sansom,et al.  Carbon nanotube/detergent interactions via coarse-grained molecular dynamics. , 2007, Nano letters.

[32]  Tijana Radivojević Enhancing sampling in computational statistics using modified hamiltonians , 2016 .

[33]  J. M. Sanz-Serna,et al.  Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.

[34]  Tijana Radivojević,et al.  Constant pressure hybrid Monte Carlo simulations in GROMACS , 2014, Journal of Molecular Modeling.

[35]  Su Hwan Kim,et al.  Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel. , 2005, Biochemistry.

[36]  Sebastian Reich,et al.  New Hybrid Monte Carlo Methods for Efficient Sampling : from Physics to Biology and Statistics (Selected Papers of the Joint International Conference of Supercomputing in Nuclear Applications and Monte Carlo : SNA + MC 2010) , 2011 .

[37]  Scott S. Hampton,et al.  A separable shadow Hamiltonian hybrid Monte Carlo method. , 2009, The Journal of chemical physics.