Selectivity for food in human ventral visual cortex

[1]  Emily J. Allen,et al.  Color-biased regions in the ventral visual pathway are food selective , 2022, Current Biology.

[2]  John A. Pyles,et al.  Improving the accuracy of single-trial fMRI response estimates using GLMsingle , 2022, eLife.

[3]  N. Kanwisher,et al.  A highly selective response to food in human visual cortex revealed by hypothesis-free voxel decomposition , 2022, Current Biology.

[4]  Emily J. Allen,et al.  A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence , 2021, Nature Neuroscience.

[5]  Talia Konkle,et al.  The world within reach: An image database of reach-relevant environments , 2021, Journal of vision.

[6]  Ilya Sutskever,et al.  Learning Transferable Visual Models From Natural Language Supervision , 2021, ICML.

[7]  A. Linear-probe,et al.  Learning Transferable Visual Models From Natural Language Supervision , 2021 .

[8]  Boris Sekachev,et al.  opencv/cvat: v1.1.0 , 2020 .

[9]  Talia Konkle,et al.  Large-scale dissociations between views of objects, scenes, and reachable-scale environments in visual cortex , 2020, Proceedings of the National Academy of Sciences.

[10]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[11]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[12]  Patrícia Augustin Jaques,et al.  An Analysis of Hierarchical Text Classification Using Word Embeddings , 2018, Inf. Sci..

[13]  Abhinav Gupta,et al.  BOLD5000: A public fMRI dataset of 5000 images , 2018, ArXiv.

[14]  Talia Konkle,et al.  Mid-level visual features underlie the high-level categorical organization of the ventral stream , 2018, Proceedings of the National Academy of Sciences.

[15]  Vanessa Troiani,et al.  Distinct and overlapping fusiform activation to faces and food , 2018, NeuroImage.

[16]  David C Van Essen,et al.  The impact of traditional neuroimaging methods on the spatial localization of cortical areas , 2018, Proceedings of the National Academy of Sciences.

[17]  Daniel R. Little,et al.  Small is beautiful: In defense of the small-N design , 2018, Psychonomic bulletin & review.

[18]  Yaoda Xu,et al.  Goal-Directed Visual Processing Differentially Impacts Human Ventral and Dorsal Visual Representations , 2017, The Journal of Neuroscience.

[19]  G. Humphreys,et al.  Biased towards food: Electrophysiological evidence for biased attention to food stimuli , 2016, Brain and Cognition.

[20]  L. Barsalou,et al.  A core eating network and its modulations underlie diverse eating phenomena , 2016, Brain and Cognition.

[21]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[22]  R. Rumiati,et al.  We are what we eat: How food is represented in our mind/brain , 2016, Psychonomic Bulletin & Review.

[23]  Vladimir Pavlovic,et al.  Neural correlates of the food/non-food visual distinction , 2016, Biological Psychology.

[24]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Jack L. Gallant,et al.  Pycortex: an interactive surface visualizer for fMRI , 2015, Front. Neuroinform..

[26]  Kalanit Grill-Spector,et al.  Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific , 2015, The Journal of Neuroscience.

[27]  Leslie G. Ungerleider,et al.  Curvature-processing network in macaque visual cortex , 2014, Proceedings of the National Academy of Sciences.

[28]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[29]  Angela R Laird,et al.  Neural Bases Of Food Perception: Coordinate-Based Meta-Analyses Of Neuroimaging Studies In Multiple Modalities , 2013, Obesity.

[30]  A. Caramazza,et al.  Tripartite Organization of the Ventral Stream by Animacy and Object Size , 2013, The Journal of Neuroscience.

[31]  Evelina Fedorenko,et al.  Subject-specific functional localizers increase . . . , 2012 .

[32]  Roger B. H. Tootell,et al.  A Cardinal Orientation Bias in Scene-Selective Visual Cortex , 2012, The Journal of Neuroscience.

[33]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[34]  Hervé Abdi,et al.  STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling , 2012 .

[35]  Max A. Viergever,et al.  The first taste is always with the eyes: A meta-analysis on the neural correlates of processing visual food cues , 2011, NeuroImage.

[36]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[37]  Bradford Z. Mahon,et al.  The Role of the Dorsal Visual Processing Stream in Tool Identification , 2010, Psychological science.

[38]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[39]  Alex A. Freitas,et al.  A survey of hierarchical classification across different application domains , 2010, Data Mining and Knowledge Discovery.

[40]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[41]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Anna S. Law,et al.  Attention capture by faces , 2008, Cognition.

[43]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[44]  N. Kanwisher,et al.  Domain specificity in visual cortex. , 2006, Cerebral cortex.

[45]  E. Rolls Brain mechanisms underlying flavour and appetite , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  D. Ridder,et al.  Evolved to satisfy our immediate needs: Self-control and the rewarding properties of food , 2006, Appetite.

[47]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Haxby,et al.  Dissociation of face-selective cortical responses by attention. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  D. D. de Ridder,et al.  Evolved to satisfy our immediate needs: self-control and the rewarding properties of food. , 2006, Appetite.

[50]  Patrick Bateson,et al.  The Active Role of Behaviour in Evolution , 2004 .

[51]  Bruce D. McCandliss,et al.  The visual word form area: expertise for reading in the fusiform gyrus , 2003, Trends in Cognitive Sciences.

[52]  Daniel Kersten,et al.  Is Color an Intrinsic Property of Object Representation? , 2003, Perception.

[53]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[54]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[55]  N. Kanwisher,et al.  The Human Body , 2001 .

[56]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[57]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[58]  J. Mollon,et al.  Fruits, foliage and the evolution of primate colour vision. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  Christopher R. Genovese,et al.  A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data , 2000 .

[60]  N. Kanwisher Domain specificity in face perception , 2000, Nature Neuroscience.

[61]  M. Tarr,et al.  FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise , 2000, Nature Neuroscience.

[62]  E. Rolls The orbitofrontal cortex and reward. , 2000, Cerebral cortex.

[63]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[64]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[65]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[66]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[67]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[68]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[69]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[70]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[71]  A. D. Gordon A Review of Hierarchical Classification , 1987 .

[72]  J. Baldwin A New Factor in Evolution , 1896, The American Naturalist.