Local adaption for approximation and minimization of univariate functions

Most commonly used \emph{adaptive} algorithms for univariate real-valued function approximation and global minimization lack theoretical guarantees. Our new locally adaptive algorithms are guaranteed to provide answers that satisfy a user-specified absolute error tolerance for a cone, $\mathcal{C}$, of non-spiky input functions in the Sobolev space $W^{2,\infty}[a,b]$. Our algorithms automatically determine where to sample the function---sampling more densely where the second derivative is larger. The computational cost of our algorithm for approximating a univariate function $f$ on a bounded interval with $L^{\infty}$-error no greater than $\varepsilon$ is $\mathcal{O}\Bigl(\sqrt{{\left\|f"\right\|}_{\frac12}/\varepsilon}\Bigr)$ as $\varepsilon \to 0$. This is the same order as that of the best function approximation algorithm for functions in $\mathcal{C}$. The computational cost of our global minimization algorithm is of the same order and the cost can be substantially less if $f$ significantly exceeds its minimum over much of the domain. Our Guaranteed Automatic Integration Library (GAIL) contains these new algorithms. We provide numerical experiments to illustrate their superior performance.

[1]  Fred J. Hickernell,et al.  Reliable Adaptive Cubature Using Digital Sequences , 2014, MCQMC.

[2]  Matthias U. Horn,et al.  Optimal algorithms for global optimization in case of unknown Lipschitz constant , 2006, J. Complex..

[3]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[4]  Yuhan Ding Guaranteed adaptive univariate function approximation , 2015 .

[5]  Fred J. Hickernell,et al.  The cost of deterministic, adaptive, automatic algorithms: Cones, not balls , 2013, J. Complex..

[6]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[7]  Fred J. Hickernell,et al.  Guaranteed Conservative Fixed Width Confidence Intervals Via Monte Carlo Sampling , 2012, 1208.4318.

[8]  Grzegorz W. Wasilkowski,et al.  The power of adaption for approximating functions with singularities , 2008, Math. Comput..

[9]  Xin Tong A GUARANTEED, ADAPTIVE, AUTOMATIC ALGORITHM FOR UNIVARIATE FUNCTION MINIMIZATION , 2014 .

[10]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[11]  Lan Jiang GUARANTEED ADAPTIVE MONTE CARLO METHODS FOR ESTIMATING MEANS OF RANDOM VARIABLES , 2016 .

[12]  H. Woxniakowski Information-Based Complexity , 1988 .

[13]  Sou-Cheng T. Choi,et al.  MINRES-QLP Pack and Reliable Reproducible Research via Supportable Scientific Software , 2014 .

[14]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[15]  Siegfried M. Rump,et al.  Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.

[16]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[17]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[18]  Henryk Wozniakowski,et al.  A survey of information-based complexity , 1985, J. Complex..

[19]  Leszek Plaskota Automatic integration using asymptotically optimal adaptive Simpson quadrature , 2015, Numerische Mathematik.

[20]  Erich Novak,et al.  On the Power of Adaption , 1996, J. Complex..

[21]  J. Miller Numerical Analysis , 1966, Nature.

[22]  Fred J. Hickernell,et al.  Adaptive Multidimensional Integration Based on Rank-1 Lattices , 2014, MCQMC.

[23]  Fred J. Hickernell,et al.  GAIL - Guaranteed Automatic Integration Library in MATLAB: Documentation for Version 2.1 , 2015, ArXiv.