Synthese, Struktur und Reaktivität von η3-1,2-Diphosphaallylkomplexen sowie von [{(η5-C5H5)(CO)2W–Co(CO)3}{μ-AsCH(SiMe3)2}(μ-CO)]

Reaction of ClP=C(SiMe(2)iPr)(2) (3) with Na[MO(CO)(3)-(eta(5)-C5H5)] afforded the phosphavinylidene complex [(eta(5)-C5H5)(CO)(2)Mo=P=C(SiMe(2)iPr)(2)] (4) which in situ was converted into the eta(1)-1,2-diphosphaallyl complex [eta(5)-(C5H5)(CO)(2)Mo{eta(3)-tBuPPC(SiMe(2)iPr)(2)] (6) by treatment with the phosphaalkene tBuP=C(NMe2)(2). The chloroarsanyl complexes [(eta(5)-C5H5)(CO)(3)M - As(Cl)CH(SiMe3)(2)] [where M=Mo (9); M=W (10)] resulted from the reaction of Na[M(CO)(3)(eta(5)-C5H5)] (M= Mo, W) with Cl2AsCH(SiMe3)(2). The tungsten derivative 10 and Na[CO(CO)(4)] underwent reaction to give the dinuclear mu-arsinidene complex [(eta(5)-C5H5)(CO)(2)W - CO(CO)(3){mu-AsCH(SiMe3)(2)}(mu-CO)] (11). Treatment of [(eta(5)-C5H5)(CO)(2)Mo{eta(3)-tBuPPC(SiMe3)(2)}] (1) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(eta(5)-C5H5)(CO)(2)Mo{eta(2)-tBu(H)P - P(F)CH(SiMe3)(2)}]BF4 (18). and [Cp(CO)(2)MO{F2PCH(SiMe3)(2)}(tBuPH(2))]BF4 (19) by HF-addition to the PC bond of the eta(3)-diphosphaallyl ligand and subsequent protonation (18) and/or scission of the PP bond by the acid (19). Consistently 19 was the sole product when I was allowed to react with an excess of ethereal HBF4. The products 6, 9, 10, 11, 18 and 19 were characterized by means of spectroscopy (IR, H-1-, C-13{H-1}-, P-31{H-1}-NMR, MS). Moreover, the molecular structures of 6, 11 and 18 were determined by X-ray diffraction analysis.

[1]  B. Neumann,et al.  Reactivity of the inversely polarised arsaalkenes R-As=C(NMe2)2 {R = [(η5-C5Me5)(CO)2Fe], tBuC(O)} towards vinylidene complexes [η5-(C5H5)(CO)-(NO)W=C=C(H)R] (R = Ph, tBu) , 2006 .

[2]  T. Braun,et al.  Arsaalkenes R−AsC(NMe2)2 [R = PhC(O), 4-EtC6H4C(O), 2,4,6-Me3C6H2C(O), tBuC(O), Me3Si]: Versatile Reagents in the Chemistry of Heterocumulenes , 2006 .

[3]  T. Braun,et al.  Reactivity of the Inversely Polarized Arsaalkenes R–As=C(NMe2)2 {R = [(η5‐C5Me5)(CO)2Fe], tBuC(O), 4‐Et–C6H4C(O)} towards Phosphavinylidene Complexes [η5‐(C5H5)(CO)2M=P=C(SiMe3)2] (M = Mo, W) , 2006 .

[4]  B. Neumann,et al.  Synthesis and Structure of the First η3‐1,2‐Diphosphaallyl Complexes [(η5‐C5H5)(CO)2M{η3‐RPPC(SiMe3)2}] (M = Mo, R = tBu, Cy; M = W, R = tBu) from [(η5‐C5H5)(CO)2M=P=C(SiMe3)2] (M = Mo, W) and Inversely Polarized Phosphaalkenes RP=C(NMe2)2 (R = tBu, Cy) , 2005 .

[5]  B. Neumann,et al.  Syntheses and molecular structures of eta3-[(eta5-Cp*)(CO)2Fe-AsPC(SiMe3)2]M(CO)2(eta5-Cp)(M = Mo, W): the first complexes featuring eta3-arsaphosphaallyl ligands. , 2005, Chemical communications.

[6]  B. Neumann,et al.  Reactivity of the inversely polarized phosphaalkenes RP=C(NMe2)2 (R = tBu, Me3Si, H) towards arylcarbene complexes [(CO)5M=C(oEt)Ar] (Ar= Ph, M = Cr, W; Ar = 2-MeC6H4, 2-MeOC6H4, M = W). , 2001, Chemistry.

[7]  M. Nieger,et al.  Methylenphosphanyl-Komplexe von Chrom, Molybdän, Wolfram, Eisen und Nickel : Synthese und Reaktionen , 1993 .

[8]  R. Appel,et al.  Multiple bonds and low coordination in phosphorus chemistry , 1990 .

[9]  A. Orpen,et al.  Synthesis and reactivity of a phosphavinylidene complex of molybdenum , 1989 .

[10]  C. M. Nunn,et al.  Synthesis and reactivity of mononuclear molybdenum phosphido complexes, [Mo(CO)2{P(Cl)R}(η-C5H5)][R = CH(SiMe3)2 or NCMe2CH2CH2CH2CMe2]. X-Ray crystal structures of [Mo(CO)2{P(X)(NCMe2CH2CH2CH2CMe2)}(η-C5H5)](X = Cl or NMe2) and [Mo2(CO)4{µ-P2[CH(SiMe3)2]2}(η-C5H5)2] , 1988 .

[11]  J. Escudié,et al.  DIBISYLDIPHOSPHENE: NEW ROUTES AND FIRST ASPECTS OF ITS REACTIVITY , 1987 .

[12]  S. Martinengo,et al.  Bismuth–cobalt heteronuclear carbonyl cluster compounds. Synthesis and X-ray characterization of the neutral [BiCo3(CO)9] and of the paramagnetic anion [Bi2Co4(CO)11]– , 1987 .

[13]  A. Arif,et al.  A novel diphosphorus-molybdenum ring system , 1986 .

[14]  A. Arif,et al.  Three-membered rings featuring metal–phosphorus multiple bonding , 1985 .

[15]  E. Niecke,et al.  Metallophospha-alkenes: a simple access and some reactivities involving the phosphorus atom , 1985 .

[16]  D. Mingos Polyhedral skeletal electron pair approach , 1984 .

[17]  N. C. Norman,et al.  A (phosphavinylidene)molybdenum complex: two-coordinate phosphorus involving multiple bonding to both carbon and molybdenum , 1984 .

[18]  W. Malisch,et al.  Transition metal substituted phosphanes, arsanes and stibanes. XLII[1] Thermal treatment of Cp(OC)3 W-substituted arsanes and arsinesulfides: inter- and intramolecular ligand exchange with co-substitution , 1984 .

[19]  S. Daniele,et al.  The solution state of nickel(II) and nickel(I) in the presence of diphosphines in acetonitrile. A combined electroanalytical and spectrophotometric approach , 1984 .

[20]  P. Sullivan,et al.  Group VIB complexes containing arsenic-arsenic double bonds. Synthesis and crystallographic characterization of [.eta.5-C5H5M(CO)2]2(.mu.-.eta.2-As2) (M = Mo or W) , 1982 .

[21]  P. Power,et al.  Bulky alkyls, amides, and aryloxides of main Group 5 elements. Part 1. Persistent phosphinyl and arsinyl radicals ·MRR′ and their chloroprecursors MRR′Cl and related compounds , 1980 .

[22]  L. F. Dahl,et al.  Preparation and structural characterization of the mono- and bis(triphenylphosphine)-substituted derivatives of Co2(CO)6(.mu.-As2). Effect of phosphine ligand substitution on the Co2As2 metal cluster system , 1979 .

[23]  K. Wade,et al.  Structural and Bonding Patterns in Cluster Chemistry , 1976 .

[24]  W. Edgell,et al.  Preparation of sodium cobalt tetracarbonyl , 1970 .

[25]  L. E. Alexander,et al.  The crystal structure of dicobalt octacarbonyl , 1964 .

[26]  Rabald Handbuch der Präparativen Anorganischen Chemie. G. Brauer. 2. umgearb. Aufl. Zweiter Band. Ferdinand Enke-Verlag Stuttgart 1962. S. 885–1611, 82 Abb. Preis: DM 108, – , 1962 .