On the Solution of the Inverse Eigenvalue Complementarity Problem

In this paper, we discuss the solution of an Inverse Eigenvalue Complementarity Problem. Two nonlinear formulations are presented for this problem. A necessary and sufficient condition for a stationary point of the first of these formulations to be a solution of the problem is established. On the other hand, to assure global convergence to a solution of this problem when it exists, an enumerative algorithm is designed by exploiting the structure of the second formulation. The use of additional implied constraints for enhancing the efficiency of the algorithm is also discussed. Computational results are provided to highlight the performance of the algorithm.

[1]  Silvério S. Rosa,et al.  Variational Inequality Formulation of the Asymmetric Eigenvalue Complementarity Problem and its Solution By Means of Gap Functions , 2011 .

[2]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[3]  Hanif D. Sherali,et al.  Computational Optimization and Applications Manuscript No. on an Enumerative Algorithm for Solving Eigenvalue Complementarity Problems , 2022 .

[4]  Alberto Seeger,et al.  Cone-constrained eigenvalue problems: theory and algorithms , 2010, Comput. Optim. Appl..

[5]  Joaquim Júdice,et al.  A DC programming approach for solving the symmetric Eigenvalue Complementarity Problem , 2012, Comput. Optim. Appl..

[6]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[7]  G. Golub,et al.  Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .

[8]  A. Seeger Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions , 1999 .

[9]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[10]  Joaquim Júdice,et al.  On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm , 2008, Numerical Algorithms.

[11]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[12]  Nikolaos V. Sahinidis,et al.  Exact Algorithms for Global Optimization of Mixed-Integer Nonlinear Programs , 2002 .

[13]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[14]  Hanif D. Sherali,et al.  On the asymmetric eigenvalue complementarity problem , 2009, Optim. Methods Softw..

[15]  Hanif D. Sherali,et al.  On the computation of all eigenvalues for the eigenvalue complementarity problem , 2014, J. Glob. Optim..

[16]  Alberto Seeger,et al.  Quadratic Eigenvalue Problems under Conic Constraints , 2011, SIAM J. Matrix Anal. Appl..

[17]  Pedro Gajardo,et al.  Solving inverse cone-constrained eigenvalue problems , 2013, Numerische Mathematik.

[18]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[19]  Hanif D. Sherali,et al.  The eigenvalue complementarity problem , 2007, Comput. Optim. Appl..

[20]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[21]  Joaquim Júdice,et al.  Efficient DC programming approaches for the asymmetric eigenvalue complementarity problem , 2013, Optim. Methods Softw..

[22]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[23]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..

[24]  Joaquim Júdice,et al.  The symmetric eigenvalue complementarity problem , 2003, Math. Comput..

[25]  Alberto Seeger,et al.  On eigenvalues induced by a cone constraint , 2003 .

[26]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[27]  Pedro Gajardo,et al.  Reconstructing a matrix from a partial sampling of Pareto eigenvalues , 2012, Comput. Optim. Appl..

[28]  Joaquim J. Júdice,et al.  The directional instability problem in systems with frictional contacts , 2004 .

[29]  M. Seetharama Gowda,et al.  On the finiteness of the cone spectrum of certain linear transformations on Euclidean Jordan algebras , 2009 .

[30]  Samir Adly,et al.  A nonsmooth algorithm for cone-constrained eigenvalue problems , 2011, Comput. Optim. Appl..

[31]  Francisco Marcellán,et al.  A new numerical quadrature formula on the unit circle , 2007, Numerical Algorithms.

[32]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[33]  Alberto Seeger,et al.  ON CARDINALITY OF PARETO SPECTRA , 2011 .