On the degree and half-degree principle for symmetric polynomials

Abstract In this note we aim to give a new, elementary proof of a statement that was first proved by Timofte (2003) [15] . It says that a symmetric real polynomial F of degree d in n variables is positive on R n (or on R ≥ 0 n ) if and only if it is non-negative on the subset of points with at most max { ⌊ d / 2 ⌋ , 2 } distinct components. We deduce Timofte’s original statement as a corollary of a slightly more general statement on symmetric optimization problems. The idea that we are using to prove this statement is that of relating it to a linear optimization problem in the orbit space. The fact that for the case of the symmetric group S n this can be viewed as a question on normalized univariate real polynomials with only real roots allows us to conclude the theorems in a very elementary way. We hope that the methods presented here will make it possible to derive similar statements also in the case of other groups.

[1]  D. Hilbert Über die Darstellung definiter Formen als Summe von Formenquadraten , 1888 .

[2]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[3]  Vlad Timofte,et al.  On the positivity of symmetric polynomial functions.: Part I: General results , 2003 .

[4]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[5]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[6]  William Harris Real Even Symmetric Ternary Forms , 1999 .

[7]  Über positive Darstellungen von Polynomen , 1911 .

[8]  B. Reznick,et al.  Even symmetric sextics , 1987 .

[9]  Marie-Françoise Roy THE ROLE OF HILBERT PROBLEMS IN REAL ALGEBRAIC GEOMETRY , 1999 .

[10]  Bernd Sturmfels,et al.  Algorithms in Invariant Theory (Texts and Monographs in Symbolic Computation) , 2008 .

[11]  J. Sylvester,et al.  XVIII. On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s functions, and that of the greatest algebraical common measure , 1853, Philosophical Transactions of the Royal Society of London.

[12]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[13]  N. Obreshkov Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .

[14]  Claudio Procesi,et al.  Positive symmetric functions , 1978 .

[15]  J. Schur,et al.  Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen. , 1914 .

[16]  Manfred Knebusch,et al.  Einführung in die reelle Algebra , 1989 .

[17]  Claus Scheiderer,et al.  Sums of squares and moment problems in equivariant situations , 2008, 0808.0034.

[18]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[19]  D. G. Mead Newton's Identities , 1992 .

[20]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[21]  J. Borcea,et al.  Polya-Schur master theorems for circular domains and their boundaries , 2006, math/0607416.

[22]  E. Artin Über die Zerlegung definiter Funktionen in Quadrate , 1927 .

[23]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .