Stability analysis of a capacitive FGM micro-beam using modified couple stress theory

Based on the Modified Couple Stress Theory, a functionally graded micro-beam under electrostatic forces is studied. The FGM micro-beam is made of two materials and material properties vary continuously along the beam thickness according to a power-law. Dynamic and static pull-in voltages are obtained and it is shown that the static and dynamic pull-in voltages for some materials cannot be obtained using classic theories and components of couple stress must be taken into account. In addition, it is shown that the values of pull-in voltages depend on the variation through the thickness of the volume fractions of the two constituents.

[1]  George C. Tsiatas,et al.  A new Kirchhoff plate model based on a modified couple stress theory , 2009 .

[2]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[3]  W. T. Koiter Couple-stresses in the theory of elasticity , 1963 .

[4]  M. Şi̇mşek,et al.  Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories , 2010 .

[5]  Mohammad Taghi Ahmadian,et al.  Sensitivity Analysis of Atomic Force Microscope Cantilever Made of Functionally Graded Materials , 2009 .

[6]  Shenjie Zhou,et al.  The size-dependent natural frequency of Bernoulli–Euler micro-beams , 2008 .

[7]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[8]  MEMS tunable capacitors with fragmented electrodes and rotational electro-thermal drive , 2007 .

[9]  Vera Sazonova,et al.  A tunable carbon nanotube resonator , 2006 .

[10]  S. K. Park,et al.  Bernoulli–Euler beam model based on a modified couple stress theory , 2006 .

[11]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[12]  Alberto Ballestra,et al.  FEM modelling and experimental characterization of microbeams in presence of residual stress , 2010 .

[13]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[14]  A. Witvrouw,et al.  The Use of Functionally Graded Poly-SiGe Layers for MEMS Applications , 2005 .

[15]  M. Asghari,et al.  On the size-dependent behavior of functionally graded micro-beams , 2010 .

[16]  Dongil Kwon,et al.  Tensile properties and fatigue crack growth in LIGA nickel MEMS structures , 2005 .

[17]  G. Rezazadeh,et al.  Application of the Generalized Differential Quadrature Method to the Study of Pull-In Phenomena of MEMS Switches , 2007, Journal of Microelectromechanical Systems.

[18]  Andrew W. Mcfarland,et al.  Role of material microstructure in plate stiffness with relevance to microcantilever sensors , 2005 .

[19]  F. van Keulen,et al.  On the size-dependent elasticity of silicon nanocantilevers: impact of defects , 2011 .

[20]  Romesh C. Batra,et al.  Pull-In Instabilities in Functionally Graded Microthermoelectromechanical Systems , 2008 .

[21]  S. Senturia Microsystem Design , 2000 .

[22]  M. Ashby,et al.  Micro-hardness of annealed and work-hardened copper polycrystals , 1996 .

[23]  Ghader Rezazadeh,et al.  Dynamic characteristics and forced response of an electrostatically-actuated microbeam subjected to fluid loading , 2009 .

[24]  Yapu Zhao,et al.  Numerical and Analytical Study on the Pull-in Instability of Micro-Structure under Electrostatic Loading , 2006 .

[25]  Sritawat Kitipornchai,et al.  Characterization of FGM micro-switches under electrostatic and Casimir forces , 2010 .

[26]  Liao-Liang Ke,et al.  Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory , 2011 .

[27]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[28]  Ioannis Chasiotis,et al.  The mechanical strength of polysilicon films: Part 2. Size effects associated with elliptical and circular perforations , 2003 .

[29]  Mohammad Taghi Ahmadian,et al.  Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory , 2010 .

[30]  Wen-Hui Lin,et al.  Stability and bifurcation behaviour of electrostatic torsional NEMS varactor influenced by dispersion forces , 2007 .

[31]  G. Rezazadeh,et al.  Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage , 2006 .

[32]  V. Radmilović,et al.  Metallic NEMS components fabricated from nanocomposite Al–Mo films , 2006 .

[33]  R. D. Mindlin Stress functions for a Cosserat continuum , 1965 .

[34]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[35]  Gabriel M. Rebeiz,et al.  Micromachined devices for wireless communications , 1998, Proc. IEEE.

[36]  Xian‐Fang Li,et al.  Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force , 2009 .

[37]  M. Wuttig,et al.  NEW FERROMAGNETIC AND FUNCTIONALLY GRADE SHAPE MEMORY ALLOYS , 2003 .

[38]  Yong Qing Fu,et al.  TiNi-based thin films in MEMS applications: a review , 2004 .

[39]  A. Saidi,et al.  Levy Solution for Buckling Analysis of Functionally Graded Rectangular Plates , 2010 .

[40]  Weiyuan Wang,et al.  Future of microelectromechanical systems (MEMS) , 1996 .

[41]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[42]  Lin Wang,et al.  Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration , 2010 .

[43]  Lin Wang,et al.  Size-dependent vibration characteristics of fluid-conveying microtubes , 2010 .

[44]  A. Chong,et al.  Indentation model and strain gradient plasticity law for glassy polymers , 1999 .

[45]  R. Toupin Elastic materials with couple-stresses , 1962 .

[46]  Yong Qing Fu,et al.  Functionally graded TiN/TiNi shape memory alloy films , 2003 .

[47]  C. Nguyen,et al.  Design of low actuation voltage RF MEMS switch , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[48]  Ghader Rezazadeh,et al.  Investigation of the torsion and bending effects on static stability of electrostatic torsional micromirrors , 2007 .