Supervised ranking : from semantics to algorithms

[1]  R. Hartley Transmission of information , 1928 .

[2]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[3]  K. Arrow,et al.  Social Choice and Individual Values , 1951 .

[4]  G. Choquet Theory of capacities , 1954 .

[5]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[6]  Paul Watzlawick,et al.  De pragmatische aspecten van de menselijke communicatie , 1975 .

[7]  A. Tversky Features of Similarity , 1977 .

[8]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[9]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..

[10]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[11]  Larry L. Schumaker,et al.  Triangulation Methods , 1987, Topics in Multivariate Approximation.

[12]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[13]  Stanislaw Romanski,et al.  Operations on Families of Sets for Exhaustive Search, Given a Monotonic Function , 1988, JCDKB.

[14]  Leon Sterling,et al.  Learning and classification of monotonic ordinal concepts , 1989, Comput. Intell..

[15]  P. Vincke Basic Concepts of Preference Modelling , 1990 .

[16]  Denis Bouyssou,et al.  Building Criteria: A Prerequisite for MCDA , 1990 .

[17]  Arie Ben-David,et al.  Automatic Generation of Symbolic Multiattribute Ordinal Knowledge‐Based DSSs: Methodology and Applications* , 1992 .

[18]  Yoav Ganzach Goals as Determinants of Nonlinear Noncompensatory Judgment Strategies: Leniency vs Strictness , 1993 .

[19]  Modeling judgments and decisions in cases of alleged child abuse and neglect , 1993 .

[20]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[21]  Jerzy W. Grzymala-Busse,et al.  The Rule Induction System LERS-a version for personal computers in Foun-dations of Computing and Dec , 1993 .

[22]  Norman Cliff,et al.  Predicting ordinal relations , 1994 .

[23]  W. D. Keyser,et al.  Argus — A New Multiple Criteria Method Based on the General Idea of Outranking , 1994 .

[24]  D. Vanderpooten Similarity Relation as a Basis for Rough Approximations , 1995 .

[25]  Vijay V. Raghavan,et al.  Exploiting Upper Approximation in the Rough Set Methodology , 1995, KDD.

[26]  Steven L. Salzberg,et al.  On growing better decision trees from data , 1996 .

[27]  Dominik Slezak,et al.  Approximate Reducts in Decision Tables , 1996 .

[28]  Toshihide Ibaraki,et al.  Data Analysis by Positive Decision Trees , 1999, CODAS.

[29]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[30]  Fishburn,et al.  Generalizations of Semiorders: A Review Note , 1997, Journal of mathematical psychology.

[31]  David W. Aha,et al.  Simplifying decision trees: A survey , 1997, The Knowledge Engineering Review.

[32]  W. Loh,et al.  SPLIT SELECTION METHODS FOR CLASSIFICATION TREES , 1997 .

[33]  R. Duncan Luce,et al.  Several unresolved conceptual problems of mathematical psychology , 1997 .

[34]  Bruno Apolloni,et al.  Learning fuzzy decision trees , 1998, Neural Networks.

[35]  K. Obermayer,et al.  Learning Preference Relations for Information Retrieval , 1998 .

[36]  Jan G. Bazan Chapter 17 a Comparison of Dynamic and Non{dynamic Rough Set Methods for Extracting Laws from Decision Tables , 1998 .

[37]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[38]  Leo Breiman Using convex pseudo-data to increase prediction accuracy , 1998 .

[39]  Roman Słowiński,et al.  A New Rough Set Approach to Evaluation of Bankruptcy Risk , 1998 .

[40]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[41]  Jerzy Stefanowski,et al.  On rough set based approaches to induction of decision rules , 1998 .

[42]  Andrzej Skowron,et al.  Rough Sets: A Tutorial , 1998 .

[43]  Vipin Kumar,et al.  ScalParC: a new scalable and efficient parallel classification algorithm for mining large datasets , 1998, Proceedings of the First Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing.

[44]  Birger Hjørland The classification of psychology : A case study in the classification of a knowledge field , 1998 .

[45]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[46]  Rob Potharst,et al.  Quasi-monotone decision trees for ordinal classification , 1998 .

[47]  Alberto Suárez,et al.  Globally Optimal Fuzzy Decision Trees for Classification and Regression , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Arno J. Knobbe,et al.  Multi-relational Decision Tree Induction , 1999, PKDD.

[49]  David Mulvaney,et al.  On-line learning of fuzzy decision trees for global path planning , 1999 .

[50]  Klaus Obermayer,et al.  Regression Models for Ordinal Data: A Machine Learning Approach , 1999 .

[51]  L. Torgo,et al.  Inductive learning of tree-based regression models , 1999 .

[52]  Louis Wehenkel,et al.  Automatic induction of fuzzy decision trees and its application to power system security assessment , 1999, Fuzzy Sets Syst..

[53]  Introduction to Categorical Data Analysis Procedures Introduction to Categorical Data Analysis Procedures , 1999 .

[54]  Carlos A. Bana e Costa,et al.  The MACBETH Approach: Basic Ideas, Software, and an Application , 1999 .

[55]  Ivo Düntsch,et al.  Rough set data analysis: A road to non-invasive knowledge discovery , 2000 .

[56]  Jan C. Bioch,et al.  Decision trees for ordinal classification , 2000, Intell. Data Anal..

[57]  D. Dubois,et al.  Fuzzy Sets: History and Basic Notions , 2000 .

[58]  Salvatore Greco,et al.  An Algorithm for Induction of Decision Rules Consistent with the Dominance Principle , 2000, Rough Sets and Current Trends in Computing.

[59]  Avraham N. Kluger,et al.  MAKING DECISIONS FROM AN INTERVIEW: EXPERT MEASUREMENT AND MECHANICAL COMBINATION , 2000 .

[60]  R. Bender,et al.  Calculating ordinal regression models in SAS and S-plus , 2000 .

[61]  Daniel Vanderpooten,et al.  A Generalized Definition of Rough Approximations Based on Similarity , 2000, IEEE Trans. Knowl. Data Eng..

[62]  Xizhao Wang,et al.  On the optimization of fuzzy decision trees , 2000, Fuzzy Sets Syst..

[63]  Thore Graepel,et al.  Large Margin Rank Boundaries for Ordinal Regression , 2000 .

[64]  Gerhard Widmer,et al.  Prediction of Ordinal Classes Using Regression Trees , 2001, Fundam. Informaticae.

[65]  Stefan Kramer Relational learning vs. propositionalization: Investigations in inductive logic programming and propositional machine learning , 2000 .

[66]  Viara Popova,et al.  Rough Sets and Ordinal Classification , 2000, ALT.

[67]  Ivo Düntsch,et al.  Statistical techniques for rough set data analysis , 2000 .

[68]  Alok N. Choudhary,et al.  Adaptive Grids for Clustering Massive Data Sets , 2001, SDM.

[69]  Jean-Luc Marichal,et al.  On a sorting procedure in the presence of qualitative interacting points of view , 2001 .

[70]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[71]  Viara Popova,et al.  Bankruptcy Prediction with Rough Sets , 2001 .

[72]  Eibe Frank,et al.  A Simple Approach to Ordinal Classification , 2001, ECML.

[73]  A Decomposition of k-Additive Choquet and k-Maxitive Sugeno Integrals , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[74]  Dung Trong Nguyen Scalable algorithms for learning large decision trees , 2001 .

[75]  Yu-Shan Shih Selecting the best categorical split for classification trees , 2001 .

[76]  I. Düntsch,et al.  Roughian: Rough information analysis , 2001, Int. J. Intell. Syst..

[77]  Marc Roubens Ordinal Multiattribute Sorting and Ordering in the Presence of Interacting Points of View , 2002 .

[78]  Enric Hernández,et al.  A reformulation of entropy in the presence of indistinguishability operators , 2002, Fuzzy Sets Syst..

[79]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[80]  Wlodzimierz Ogryczak,et al.  Dual Stochastic Dominance and Related Mean-Risk Models , 2002, SIAM J. Optim..

[81]  J. Bioch,et al.  Monotone Decision Trees and Noisy Data , 2002 .

[82]  Héctor Ariel Leiva,et al.  MRDTL: A multi-relational decision tree learning algorithm , 2002 .

[83]  Impurity measures for ranking problems. , 2002 .

[84]  Bernard De Baets,et al.  Modeling annoyance aggregation with choquet integrals. , 2002 .

[85]  A. J. Feelders,et al.  Classification trees for problems with monotonicity constraints , 2002, SKDD.

[86]  G. BELIAKOV,et al.  Monotone Approximation of Aggregation Operators Using Least Squares Splines , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[87]  A. Shashua,et al.  Taxonomy of Large Margin Principle Algorithms for Ordinal Regression Problems , 2002 .

[88]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[89]  Bernard De Baets,et al.  Sugeno Integrals for the Modelling of Noise Annoyance Aggregation , 2003, IFSA.

[90]  Yves De Smet Butterfly auctions: clustering the bidding space , 2003 .

[91]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[92]  Viara Popova,et al.  Knowledge Discovery and Monotonicity , 2004 .

[93]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[94]  Cullen Schaffer Overfitting avoidance as bias , 2004, Machine Learning.

[95]  Hendrik Blockeel,et al.  Multi-Relational Data Mining , 2005, Frontiers in Artificial Intelligence and Applications.