Self-Adaptation in Real-Parameter Genetic Algorithms with Simulated Binary Crossover

In the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored only with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using the simulated binary crossover (SBX) operator. The connection between the working of self-adaptive ESs and real-parameter GAs with SBX operator is also discussed. The self-adaptive behavior of real-parameter GAs is demonstrated on a number of test problems commonly-used in the ES literature. The remarkable similarity in the working of real-parameter GAs and self-adaptive ESs shown in this study suggests the need of emphasizing further studies on self-adaptive GAs.

[1]  N. Hansen,et al.  Convergence Properties of Evolution Strategies with the Derandomized Covariance Matrix Adaptation: T , 1997 .

[2]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[3]  Shigenobu Kobayashi,et al.  A Real-Coded Genetic Algorithm for Function Optimization Using the Unimodal Normal Distribution Crossover , 1999 .

[4]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.

[5]  Kalyanmoy Deb,et al.  A flexible optimization procedure for mechanical component design based on genetic adaptive search , 1998 .

[6]  David B. Fogel,et al.  An Evolutionary Programming Approach to Self-Adaptation on Finite State Machines , 1995, Evolutionary Programming.

[7]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[8]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[9]  BeyerHans-Georg Toward a theory of evolution strategies , 1993 .

[10]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[11]  Michael Herdy,et al.  Reproductive Isolation as Strategy Parameter in Hierarichally Organized Evolution Strategies , 1992, PPSN.

[12]  C. G. Shaefer,et al.  The ARGOT Strategy: Adaptive Representation Genetic Optimizer Technique , 1987, ICGA.

[13]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.

[14]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[15]  D. Fogel,et al.  A comparison of methods for self-adaptation in evolutionary algorithms. , 1995, Bio Systems.

[16]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[17]  Isao Ono,et al.  A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover , 1997, ICGA.

[18]  David B. Fogel,et al.  A Note on the Empirical Evaluation of Intermediate Recombination , 1995, Evolutionary Computation.

[19]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[20]  Donald R. Houser,et al.  A ROBUST OPTIMIZATION PROCEDURE WITH VARIATIONS ON DESIGN VARIABLES AND CONSTRAINTS , 1995 .

[21]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[22]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[23]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.