Electron tomography in life science

Abstract Electron tomography (ET) is a three-dimensional technique suitable to study pleomorphic biological structures with nanometer resolution. This makes the methodology remarkably versatile, allowing the exploration of a large range of biological specimens, both in an isolated state and in their cellular context. The application of ET has undergone an exponential growth over the last decade, enabled by seminal technological advances in methods and instrumentation, and is starting to make a significant impact on our understanding of the cellular world. While the attained results are already remarkable, ET remains a young technique with ample potential to be exploited. Current developments towards large-scale automation, higher resolution, macromolecular labeling and integration with other imaging techniques hold promise for a near future in which ET will extend its role as a pivotal tool in structural and cell biology.

[1]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[2]  Brad J Marsh,et al.  Expedited approaches to whole cell electron tomography and organelle mark-up in situ in high-pressure frozen pancreatic islets. , 2008, Journal of structural biology.

[3]  Wolfgang Baumeister,et al.  Three-Dimensional Structure of Herpes Simplex Virus from Cryo-Electron Tomography , 2003, Science.

[4]  Friedrich Förster,et al.  Classification of cryo-electron sub-tomograms using constrained correlation. , 2008, Journal of structural biology.

[5]  J Frank,et al.  Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography , 1993, The Journal of cell biology.

[6]  Grant J. Jensen,et al.  Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK , 2006, Science.

[7]  Giovanni Cardone,et al.  Influenza virus pleiomorphy characterized by cryoelectron tomography , 2006, Proceedings of the National Academy of Sciences.

[8]  David N. Mastronarde,et al.  Golgi Structure in Three Dimensions: Functional Insights from the Normal Rat Kidney Cell , 1999, The Journal of cell biology.

[9]  Gerry McDermott,et al.  X-ray tomography of whole cells. , 2005, Current opinion in structural biology.

[10]  J. McIntosh,et al.  High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. , 1999, Molecular biology of the cell.

[11]  M. Marko,et al.  Electron tomography of frozen-hydrated isolated triad junctions. , 2002, Biophysical journal.

[12]  Maryann E Martone,et al.  The cell centered database project: an update on building community resources for managing and sharing 3D imaging data. , 2008, Journal of structural biology.

[13]  Clara Franzini-Armstrong,et al.  Electron tomography of fast frozen, stretched rigor fibers reveals elastic distortions in the myosin crossbridges. , 2004, Journal of structural biology.

[14]  Wolfgang Baumeister,et al.  A visual approach to proteomics , 2006, Nature Reviews Molecular Cell Biology.

[15]  J. McIntosh,et al.  The Molecular Architecture of Axonemes Revealed by Cryoelectron Tomography , 2006, Science.

[16]  Thomas J Deerinck,et al.  Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots , 2005, Nature Methods.

[17]  A. C. Riddle,et al.  Inversion of Fan-Beam Scans in Radio Astronomy , 1967 .

[18]  Friedrich Förster,et al.  Snapshots of nuclear pore complexes in action captured by cryo-electron tomography , 2007, Nature.

[19]  T. Deerinck,et al.  ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. , 2003, Developmental cell.

[20]  F. Förster,et al.  Identification of macromolecular complexes in cryoelectron tomograms of phantom cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Mastronarde,et al.  Three-Dimensional Analysis of Syncytial-Type Cell Plates during Endosperm Cellularization Visualized by High Resolution Electron Tomography , 2001, The Plant Cell Online.

[22]  Pierre-Alexandre Vidi,et al.  Plastoglobules Are Lipoprotein Subcompartments of the Chloroplast That Are Permanently Coupled to Thylakoid Membranes and Contain Biosynthetic Enzymes , 2006, The Plant Cell Online.

[23]  J Frank,et al.  The internal compartmentation of rat‐liver mitochondria: Tomographic study using the high‐voltage transmission electron microscope , 1994, Microscopy research and technique.

[24]  Andrew Leis,et al.  Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure , 2008, Proceedings of the National Academy of Sciences.

[25]  P. Buseck,et al.  Comparison of intensity distributions in tomograms from BF TEM, ADF STEM, HAADF STEM, and calculated tilt series. , 2005, Ultramicroscopy.

[26]  Grant J Jensen,et al.  The structure of isolated Synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography. , 2007, Journal of molecular biology.

[27]  J. Löwe,et al.  Electron Cryomicroscopy of E. coli Reveals Filament Bundles Involved in Plasmid DNA Segregation , 2009, Science.

[28]  W. Baumeister,et al.  Electron tomography of vitreous sections from cultured mammalian cells. , 2008, Journal of structural biology.

[29]  K. McDonald,et al.  Cryopreparation methods for electron microscopy of selected model systems. , 2007, Methods in cell biology.

[30]  P. Luther Sample Shrinkage and Radiation Damage of Plastic Sections , 2007 .

[31]  Jeremy N. Skepper,et al.  Biological specimen preparation for transmission electron microscopy , 1999 .

[32]  Abraham J. Koster,et al.  Cryotomography: Low-dose Automated Tomography of Frozen-hydrated Specimens , 2007 .

[33]  D. E. Kelly FINE STRUCTURE OF DESMOSOMES, HEMIDESMOSOMES, AND AN ADEPIDERMAL GLOBULAR LAYER IN DEVELOPING NEWT EPIDERMIS , 1966, The Journal of cell biology.

[34]  D. Mastronarde,et al.  Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  H. Moor Theory and practice of high pressure freezing. , 1987 .

[36]  R. Henderson,et al.  Detective quantum efficiency of electron area detectors in electron microscopy , 2009, Ultramicroscopy.

[37]  Niels Galjart,et al.  Cryo electron tomography of vitrified fibroblasts: microtubule plus ends in situ. , 2008, Journal of structural biology.

[38]  Susan K Dutcher,et al.  Three-dimensional organization of basal bodies from wild-type and delta-tubulin deletion strains of Chlamydomonas reinhardtii. , 2003, Molecular biology of the cell.

[39]  John W Sedat,et al.  UCSF tomography: an integrated software suite for real-time electron microscopic tomographic data collection, alignment, and reconstruction. , 2007, Journal of structural biology.

[40]  D. Studer,et al.  Vitrification of articular cartilage by high‐pressure freezing , 1995, Journal of microscopy.

[41]  Maryann E Martone,et al.  Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement. , 2004, Journal of structural biology.

[42]  Julio O. Ortiz,et al.  The Native 3D Organization of Bacterial Polysomes , 2009, Cell.

[43]  F. S. Sjostrand Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. , 1958, Journal of ultrastructure research.

[44]  F. Förster,et al.  Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography , 2004, Science.

[45]  D. Pease,et al.  Sectioning Techniques for Electron Microscopy Using a Conventional Microtome , 1948, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[46]  Friedrich Förster,et al.  Computational exploration of structural information from cryo-electron tomograms. , 2004, Current opinion in structural biology.

[47]  J. M. Seguí-Simarro,et al.  Electron Tomographic Analysis of Somatic Cell Plate Formation in Meristematic Cells of Arabidopsis Preserved by High-Pressure Freezing , 2004, The Plant Cell Online.

[48]  M. Aronova,et al.  Reprint of "On the feasibility of visualizing ultrasmall gold labels in biological specimens by STEM tomography" [J. Struct. Biol. 159 (2007) 507-522]. , 2008, Journal of structural biology.

[49]  D. Mastronarde,et al.  Organization of interphase microtubules in fission yeast analyzed by electron tomography. , 2007, Developmental cell.

[50]  Abraham J. Koster,et al.  Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion , 2009, Proceedings of the National Academy of Sciences.

[51]  D A Agard,et al.  Automated microscopy for electron tomography. , 1992, Ultramicroscopy.

[52]  Achilleas S. Frangakis,et al.  Cryo-Electron Tomography Reveals the Cytoskeletal Structure of Spiroplasma melliferum , 2005, Science.

[53]  José Jesús Fernández,et al.  An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. , 2003, Journal of structural biology.

[54]  G. Knott,et al.  Serial Section Scanning Electron Microscopy of Adult Brain Tissue Using Focused Ion Beam Milling , 2008, The Journal of Neuroscience.

[55]  D. Mastronarde,et al.  Fibrils Connect Microtubule Tips with Kinetochores: A Mechanism to Couple Tubulin Dynamics to Chromosome Motion , 2008, Cell.

[56]  W. Baumeister,et al.  Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography , 2002, Science.

[57]  R. Steinbrecht,et al.  Freeze-Substitution and Freeze-Drying , 1987 .

[58]  A S Frangakis,et al.  Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. , 2001, Journal of structural biology.

[59]  D. Studer,et al.  A new approach for cryofixation by high‐pressure freezing , 2001, Journal of microscopy.

[60]  D. DeRosier,et al.  Concatenated metallothionein as a clonable gold label for electron microscopy. , 2007, Journal of structural biology.

[61]  A. Claude,et al.  A STUDY OF TISSUE CULTURE CELLS BY ELECTRON MICROSCOPY , 1945, The Journal of experimental medicine.

[62]  R. Henderson Realizing the potential of electron cryo-microscopy , 2004, Quarterly Reviews of Biophysics.

[63]  J. Frank,et al.  Towards high-resolution three-dimensional imaging of native mammalian tissue: electron tomography of frozen-hydrated rat liver sections. , 2006, Journal of structural biology.

[64]  Thomas J Deerinck,et al.  Multicolor and Electron Microscopic Imaging of Connexin Trafficking , 2002, Science.

[65]  W. Kühlbrandt,et al.  Dimer ribbons of ATP synthase shape the inner mitochondrial membrane , 2008, The EMBO journal.

[66]  W. Baumeister,et al.  Electron tomography of ice-embedded prokaryotic cells. , 1998, Biophysical journal.

[67]  H. Gay,et al.  Serial sections for electron microscopy. , 1954, Science.

[68]  G. Schneider,et al.  X-ray tomography of a microhabitat of bacteria and other soil colloids with sub-100 nm resolution. , 2003, Micron.

[69]  J. Dubochet,et al.  Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. , 2005, Journal of structural biology.

[70]  Abraham J Koster,et al.  SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum , 2008, PLoS biology.

[71]  Paul Ahlquist,et al.  Three-Dimensional Analysis of a Viral RNA Replication Complex Reveals a Virus-Induced Mini-Organelle , 2007, PLoS biology.

[72]  R. Horne,et al.  A negative staining method for high resolution electron microscopy of viruses. , 1959, Biochimica et biophysica acta.

[73]  J. Frank,et al.  Double-tilt electron tomography. , 1995, Ultramicroscopy.

[74]  A. Verkleij,et al.  Electron tomography of early melanosomes: Implications for melanogenesis and the generation of fibrillar amyloid sheets , 2008, Proceedings of the National Academy of Sciences.

[75]  D. Mastronarde Dual-axis tomography: an approach with alignment methods that preserve resolution. , 1997, Journal of structural biology.

[76]  Julio O. Ortiz,et al.  Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. , 2006, Journal of structural biology.

[77]  O. Medalia,et al.  Chromatin Organization and Radio Resistance in the Bacterium Gemmata obscuriglobus , 2008, Journal of bacteriology.

[78]  Ralf Bartenschlager,et al.  Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites , 2009, Cell Host & Microbe.

[79]  D. Mastronarde,et al.  A Computational Framework for Ultrastructural Mapping of Neural Circuitry , 2009, PLoS biology.

[80]  M. Grabenbauer,et al.  Golgi apparatus studied in vitreous sections , 2008, Journal of microscopy.

[81]  S. Harrison,et al.  Cryo-electron tomography of clathrin-coated vesicles: structural implications for coat assembly. , 2007, Journal of molecular biology.

[82]  D. DeRosier,et al.  The 3D structure of villin as an unusual F-Actin crosslinker. , 2008, Structure.

[83]  Achilleas S Frangakis,et al.  Visualization of cell microtubules in their native state , 2007, Biology of the cell.

[84]  D. J. De Rosier,et al.  Reconstruction of Three Dimensional Structures from Electron Micrographs , 1968, Nature.

[85]  T G Frey,et al.  The internal structure of mitochondria. , 2000, Trends in biochemical sciences.

[86]  R. G. Hart Electron Microscopy of Unstained Biological Material: The Polytropic Montage , 1968, Science.

[87]  J. Dubochet,et al.  Luminal particles within cellular microtubules , 2006, The Journal of cell biology.

[88]  Christian Suloway,et al.  Fully automated, sequential tilt-series acquisition with Leginon. , 2009, Journal of structural biology.

[89]  Wolfgang Baumeister,et al.  Cryo-electron tomography of vaccinia virus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Gerry McDermott,et al.  Quantitative 3-D imaging of eukaryotic cells using soft X-ray tomography. , 2008, Journal of structural biology.

[91]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[92]  R. Henderson,et al.  Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector , 2009, Ultramicroscopy.

[93]  R. Schalek,et al.  Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy , 2007, Nature Methods.

[94]  A S Frangakis,et al.  Cryo-electron tomography of neurospora mitochondria. , 2000, Journal of structural biology.

[95]  B. Humbel,et al.  Integrated fluorescence and transmission electron microscopy. , 2008, Journal of structural biology.

[96]  M. Aronova,et al.  On the feasibility of visualizing ultrasmall gold labels in biological specimens by STEM tomography. , 2007, Journal of structural biology.

[97]  A. Hyman,et al.  Centriole assembly in Caenorhabditis elegans , 2006, Nature.

[98]  G Sapiro,et al.  Classification and 3D averaging with missing wedge correction in biological electron tomography. , 2008, Journal of structural biology.

[99]  W. Chiu,et al.  Structure of Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography. , 2006, Journal of molecular biology.

[100]  Christopher R Booth,et al.  Methods for aligning and for averaging 3D volumes with missing data. , 2008, Journal of structural biology.

[101]  J. Dubochet,et al.  VITRIFICATION OF PURE WATER FOR ELECTRON MICROSCOPY , 1981 .

[102]  M. L. Le Gros,et al.  X-ray tomography generates 3-D reconstructions of the yeast, saccharomyces cerevisiae, at 60-nm resolution. , 2003, Molecular biology of the cell.

[103]  M N Lebbink,et al.  STEM tomography in cell biology. , 2007, Journal of structural biology.

[104]  C. A. Walter,et al.  Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples , 1983, Journal of microscopy.

[105]  Grant J. Jensen,et al.  3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell , 2007, PloS one.

[106]  A. Klug,et al.  Three Dimensional Reconstructions of Spherical Viruses by Fourier Synthesis from Electron Micrographs , 1970, Nature.

[107]  A. J. Koster,et al.  Endosomal compartmentalization in three dimensions: Implications for membrane fusion , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[108]  W. Baumeister,et al.  Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography , 2007, The Journal of cell biology.

[109]  Niels Volkmann,et al.  The structural basis of actin filament branching by the Arp2/3 complex , 2008, The Journal of cell biology.

[110]  B. Marsh,et al.  Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[111]  A. Frangakis,et al.  The molecular architecture of cadherins in native epidermal desmosomes , 2007, Nature.

[112]  M. Radermacher Weighted Back-Projection Methods , 2007 .

[113]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[114]  R. Steinbrecht,et al.  Cryotechniques in Biological Electron Microscopy , 1987, Springer Berlin Heidelberg.

[115]  K. Porter,et al.  A study in microtomy for electron microscopy , 1953, The Anatomical record.

[116]  F. Förster,et al.  The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. , 2006, Structure.

[117]  Andreas Hoenger,et al.  Correlative microscopy and electron tomography of GFP through photooxidation , 2005, Nature Methods.

[118]  A. Koster,et al.  A new look at Weibel-Palade body structure in endothelial cells using electron tomography. , 2008, Journal of structural biology.

[119]  Mark A. Ragan,et al.  IllouraTM: a software tool for analysis, visualization and semantic querying of cellular and other spatial biological data , 2009, Bioinform..

[120]  J. Dubochet,et al.  Cryo‐electron microscopy of vitreous sections , 2004, The EMBO journal.

[121]  Damien Faivre,et al.  An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria , 2006, Nature.

[122]  Friedrich Förster,et al.  TOM software toolbox: acquisition and analysis for electron tomography. , 2005, Journal of structural biology.

[123]  K. Hama,et al.  A STEREOSCOPE OBSERVATION OF TRACHEAL EPITHELIUM OF MOUSE BY MEANS OF THE HIGH VOLTAGE ELECTRON MICROSCOPE , 1970, The Journal of cell biology.

[124]  Brad J Marsh,et al.  Reconstructing mammalian membrane architecture by large area cellular tomography. , 2007, Methods in cell biology.